• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 73
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 7
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 354
  • 354
  • 78
  • 76
  • 67
  • 59
  • 54
  • 54
  • 51
  • 50
  • 47
  • 43
  • 42
  • 40
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Reproductive toxicity and bioavailability of arsenic in contaminated artificial and natural soils using the earthworm

Wong, Stephen W. January 2003 (has links)
No description available.
332

Site specific evaluation of urban brownfields contaminated with trace metals

Murray, Patricia, 1964- January 1999 (has links)
No description available.
333

The association between acute childhood diarrhoea and diarrhoeagenic E.coli present in contaminated soil in informal settlements in Durban

Ramlal, Preshod Sewnand January 2016 (has links)
Submitted in fulfillment of the requirements of the degree of Master of Health Sciences in Environmental Health, Durban University of Technology, Durban, South Africa, 2016. / In South Africa, under-five childhood morbidity and mortality rates have increased due to diarrhoea with acute diarrhoea posing a major public health threat especially, in informal settlements. Therefore this study sought to, a) investigate community knowledge, attitudes, behaviour and practices (KABP) regarding domestic waste and childhood diarrhoeal management, b) to enumerate and identify diarrhoeagenic E.coli species from soil samples extracted from open waste dump sites and c) to investigate any association(s) with diarrhoeagenic E.coli and potential risk of contracting diarrhoea. This two-phased cross-sectional study in six informal settlements in the greater Durban area constituted, respectively, of the administering of questionnaires to 360 primary caregivers and; sampling the prevalence of diarrhoeagenic E.coli (DEC) in waste dumps using quantitative polymerase chain reaction methodologies. Relationships between socio-demographic and educational status to determine potential household risk factors towards under-five diarrhoea prevalence were assessed. The KABP results identified domestic waste and greywater disposal, mother and child method of sanitation, personal and domestic hygiene practices and mechanical vectors as significant contributory risk factors. Of concern is that more than 80% of under-five children played in or near faecally-contaminated waste dump sites. The recovery of four DEC pathotypes including enterohaemorrhagic E.coli, enteropathogenic E.coli, enterotoxigenic E.coli and enteroaggregative E.coli suggest that its persistence in waste-dump soil has the ability to cause under-five diarrhoea in both sporadic and endemic settings. This commonly transmitted hand-to-mouth illness will necessitate and place huge demands on the primary catalysts of change i.e. local governmental role players and caregivers. These change agents have to ensure highly consistent levels of domestic and personal hygiene and implement feasible reduction strategies to waste-dump exposure of diarrhoeal-causing pathogens, particularly among under-five children living in Durban’s informal settlements. / M
334

Transport réactif en milieux poreux non saturés / Reactive transport in unsaturated porous media

Gujisaite, Valérie 04 November 2008 (has links)
Ce travail vise à étudier le couplage entre écoulement et interactions physico-chimiques dans les sols, dans différentes conditions de saturation en eau, afin d’améliorer la prédiction du devenir des polluants. Il s’agit de comprendre en quoi le taux de saturation du milieu affecte la réactivité du sol vis-à-vis des polluants, et d’évaluer le pouvoir prédictif du transport de solutés réactifs étudié en milieu saturé sur la réactivité en conditions non saturées. Différents processus sont considérés : l’échange de cations calcium-zinc sur un milieu poreux modèle (sable-kaolinite), la sorption et désorption d’un composé organique sur une terre non contaminée, le transport de polluants prioritaires tels que les HAP sur une terre de friche industrielle. Dans chaque cas, des expériences en colonne de laboratoire ont été conduites en conditions d’écoulement saturé et non saturé permanent, permettant tout d’abord la caractérisation de l’hydrodynamique, puis l’étude du couplage avec la réactivité. Les courbes de percée obtenues ont été ensuite modélisées avec des codes tels que CXTFIT. On a montré l’influence de la teneur en eau du milieu sur le transport réactif, variable suivant le type de réaction considéré, la structure des milieux jouant également un rôle important. L’échange d’ions sur le milieu modèle n’est globalement pas affecté par la teneur en eau, dans une gamme proche de la saturation. En revanche, une plus forte sorption et une plus faible mobilisation des polluants organiques ont été observées en conditions non saturées. Le transport réactif de ces composés ne peut donc pas être prédit en conditions non saturées à partir de mesures en milieu saturé, qui peuvent surestimer le transport / The aim of this work was to study the link between water flow and physical and chemical interactions in soils under variably water flow conditions, in order to improve the prediction of contaminants fate. It deals with understanding how the porous media water content can modify soil reactivity towards contaminants, and assessing the possibility to predict reactivity under unsaturated conditions with reactive solute transport studied in saturated porous media. Various processes were considered: cations exchange calcium-zinc on a model porous media (sand-kaolinite), sorption and desorption of an organic compound on a non polluted soil, transport of priority contaminants such as PAHs on an industrial contaminated soil. In each case, experiments were carried out with soil columns at the laboratory scale under saturated and unsaturated steady-state flow conditions, in order to characterize at first hydrodynamics and then to study the link with reactivity. Modeling of the breakthrough curves was then performed with codes such as CXTFIT. We showed an influence of porous media water content on reactive transport which was different as a function of the interaction. Porous media structure must also be taken into account. Ions exchange on a model porous media was not globally modified by the water content varying in a range close to saturation. On the contrary, higher sorption and lower migration of organic contaminants were observed under unsaturated conditions. Reactive transport of these compounds cannot therefore be predicted under unsaturated conditions with tests performed on saturated porous media which may overestimate transport
335

Reflectance spectroscopy vis-NIR and mid-IR applied for soil studies / Espectroscopia de reflectância vis-NIR e mid-IR aplicada ao estudo de solos

Araujo, Suzana Romeiro 31 January 2013 (has links)
Effective agricultural planning and environmental monitoring requires basic soil information. However, analyzing soil properties by conventional methods is often expensive and time consuming. In addition, these analyses result in chemical residues, which may be environmentally hazardous. In recent decades near-infrared diffuse reflectance spectroscopy (400-2500 nm) has been shown to be a viable alternative for rapidly analyzing soil properties. Information needs to be mathematically extracted from the spectra in order to correlate them with soil properties, and multivariate statistics are often used to calibrate soil prediction models.However, soils evaluated by the mid-IR region (4000 to 400 cm-1) warrants new studies. The primary aim of this study was to investigate the feasibility to use soil spectral data and chemometrics methods to predict soil properties, in order to reduce the number of conventional soil analyses. The understanding of the relationships between spectral characteristics and the physic-chemical properties of soils were evaluated in three different studies with soils of: (i) spectral library (Chapter 1), (ii) amazonian region (Chapter 2), (iii) soils contaminated with heavy metals and tannery sludge (Chapter 3).It was possible to identify regions of the vis-NIR and mid-IR spectra that showed absorption features due to water, iron oxides, and clay minerals. In Chapter 1 the predicted models for clay and soil organic matter showed high accuracy. It reflects the influence of the direct spectral responses of these properties in the NIR. The division of the large library into smaller subsets based on variation in the spectra characteristics was the best alternative to quantify soil attributes in tropical soils by Partial Least Square regressions. Another alternative would be to use Boosted regression trees for the whole library. In Chapter 2, the mid-IR predicted models outperformed the vis-NIR. Comparison of the interpolation results revealed that the predictions of the PLS regression (mid-IR and vis-NIR) adequately reproduced the spatial pattern of the properties evaluated, especially soil organic carbon and cation exchange capacity and, had the ability to predict the soil properties of unknown samples from a different geographical location. In Chapter 3, the metals adsorption to soil constituents caused expressive changes in soil spectral curves, showing spectral differentiation between highly contaminated soil and soils that are relatively contaminant-free. The results indicate that the Cr pseudo-total content can be predicted by spectroscopy reflectance with both sensors data. Fe and Mn also can be predicted accuratley by vis-NIR. The vis-NIR models outperformed the mid-IR. Besides these results, the vis-NIR instrument has less complicated sample and can be used directly in the field using portable spectrorradiometers. / Para o planejamento agrícola e o monitoramento ambiental são necessárias informações sobre os solos. As análises de solos realizadas através de métodos convencionais em laboratório são normalmente caras e demoradas. Além disso, geram resíduos químicos que caso não sejam dispostos e/ou tratados adequadamente, podem contaminar o ambiente. Nas últimas décadas a espectroscopia de reflectância difusa na região do visível e infravermelho próximo (vis-NIR, 400-2500 nm) do espectroeletromagnético tem se mostrado uma alternativa viável para analisar atributos de solo de maneira rápida. Para tanto, a informação espectral é matematicamente extraída do espectro e métodos multivariados são usados afim de correlacioná-la com as propriedades do solo. Entretanto, ainda são poucos estudos de solos em que a espectroscopia de reflectância na região do infravermelho médio (mid-IR, 4000-400 cm-1) foi usada. Objetivaram-se com este trabalho investigar a viabilidade da utilização de dados espectrais vis-NIR e mid-IR de solos e métodos quimiométricos para predizer as propriedades dos mesmos, a fim de reduzir o número de análises convencionais de terra. As relações existentes entre características espectrais e propriedades físico-químicas de solos tropicais foram avaliadas em três estudos distintos com solos (i) de uma biblioteca espectral (Capítulo 1), (ii) da região amazônica (Capítulo 2) e, (iii) contaminados com metais pesados e lodo de curtume (Capítulo 3). Foi possível identificar faixas espectrais nas regiões do vis-NIR e mid-IR relacionadas às feições de absorção características da água, óxidos de ferro e minerais de argila. No capítulo 1 os modelos de predição vis-NIR de argila e matéria orgânica do solo apresentaram elevada acurácia. Isto reflete a influência direta destas propriedades do solo na sua resposta espectral. A divisão da biblioteca espectral em subgrupos menores baseada nas características espectrais foi eficiente na quantificação de atributos de solos tropicais. Outra alternativa foi usar o método de regressão de árvores para o conjunto total de dados. No capítulo 2, os modelos de predição mid-IR foram mais precisos que os vis-NIR. Os modelos de carbono orgânico do solo e capacidade de troca catiônica obtidos pela regressão pelo método dos mínimos quadrados parciais permitiram a reprodução do padrão espacial destas propriedades na área estudada (r > 0.81); e puderam ser aplicados em uma área geográfica diferente, em amostras de solos desconhecidas. No capítulo 3, a adsorção de metais em constituintes dos solos provocou mudanças nas curvas espectrais dos mesmos, mostrando diferenças entre solos altamente contaminados por metais pesados e solos livres de contaminação. Os teores de Cr (semi-total) no solo pode ser predito através da espectroscopia de reflectância vis-NIR-mid-IR e regressão por mínimos quadrados parciais. Fe e Mn também foram preditos com acurácia usando dados vis-NIR. Em geral, os modelos de predição vis- NIR de metais pesados foram mais precisos que o mid-IR. A vantagem da utilização do sensor vis-NIR está no preparo mais simples de amostras e na possibilidade de utilizá-lo diretamente no campo.
336

Nouveaux outils en sciences de l’environnement : géochimie isotopique du Cu‐Zn et spéciation des Eléments en Trace Métalliques par titrage acidimétrique. Développement et applications aux phases particulaires de l’estuaire de l’Escaut, aux émissions atmosphériques et aux sols contaminés d’Angleur/Prayon.

Petit, Jérôme C. J. 13 November 2009 (has links)
Les potentiels de nouveaux moyens d’investigation en sciences de l’environnement, tel que la géochimie des isotopes stables du Cu et du Zn et l’étude de la spéciation des éléments en trace métalliques (ETM) par titrage acidimétrique sont évalués dans le cadre de trois cas d’études, faisant intervenir des matériaux de matrices et de concentrations en ETM variables. Afin de mettre en évidence de très subtiles variations des compositions isotopiques du Cu et du Zn dans les matériaux particulaires variablement pollués, une attention particulière à été voué à la mise au point des méthodes de séparation chimique et d’analyse par MC-ICP-MS. La méthodologie analytique a été développée afin d’exploiter tout les avantages techniques offerts par le spectromètre de masse à l’ULB. Différents modes d’introduction (plasma humide vs plasma sec (Aridus/DSN), d’acquisition des mesures (mode statique ou dynamique) de correction du biais de masse (dopage au Cu, au Zn et au Ga; correction SSBM, SSBC et EEN)ont été évaluées, pour leurs effets sur la précision et la reproductibilité des mesures. D’autres travaux ont permis de quantifier les effets des interférences spectrales et non spectrales par les éléments de la matrice (Ti, Cr, Co,Fe, Ba, Si, Na, Mg et Ca) et par le rapport dopant/analyte en vue de comprendre les sources d’inexactitudes des mesures isotopiques et d’y remédier. Les données isotopiques acquises sur des minerais, sur des (plaques de) dépôts atmosphériques (usine Pb-Zn Metaleurop de Noyelles-Godault), sur des sédiments et des matières en suspension (estuaire de l’Escaut et mer du Nord), révèlent des variations significatives des compositions isotopiques du cuivre et du zinc. Dans l’estuaire de l’Escaut, les variations temporelles (carotte non perturbée, enregistrant la sédimentation sur 30 ans) et spatiales (matières en suspension échantillonnées sur 100 km, selon le profil de salinité) sont caractérisées par des signatures isotopiques en Zn anticorrélées à celle du Cu. Les données peuvent permettre de distinguer le fond géochimique naturel (le « réservoir naturel »), les pollutions diffuses (le « réservoir anthropique commun »- intégrant de multiples sources de contamination en provenance du bassin versant) et certaines pollutions ponctuelles associées à la métallurgie du Zn. Alors que les procédés utilisés en métallurgie sont eux,capable de produire des signatures isotopiques très fractionnées en Zn, ni la diagenèse précoce dans les sédiments, ni les gradients physicochimiques développés lors du mélange des eaux continentales et marines ne sont capables d’affecter significativement la signature isotopique du Cu et du Zn en phase particulaire. Dans de tels milieux, les signatures isotopiques en Cu et Zn (ainsi que celles en Pb) semblent n’être contrôlées que par le mélange conservatif entre le « réservoir naturel » et le « réservoir anthropique commun ». Les données en elles-mêmes constituent la seule base de données isotopiques en Cu, Zn, Pb dans des matériaux particulaires anthropisés estuariens et marins jamais produite à ce jour. Elles permettent de prédire que la signature isotopique en Cu du « réservoir naturel » devrait être légèrement plus enrichie en isotopes lourds que celle du réservoir « anthropique commun » (par analogie au Zn). Si la géochimie isotopique du Cu et du Zn a le potentiel de distinguer différentes sources de pollution, l’évaluation des risques liés à ces pollutions doit tenir compte des formes chimiques des ETM, typiquement mises en évidences par les méthodes d’extraction sélectives (séquentielles, dont le protocole BCR). La méthode alternative proposée pour l’étude de la spéciation, plus versatile (capable de mettre en évidence des phases non prédéfinies et applicable à une variété de matrices plus large) est capable de surmonter plusieurs limitations (dont les problèmes de sélectivité liées au mauvais contrôle de l’acidité du milieu réactionnel) caractéristiques des méthodes traditionnelles. Appliquée à des sédiments marins/estuariens et des sols, la méthode de titrage acidimétrique s’est révélée capable de quantifier les proportions relatives des phases acido-solubles (principal problème des méthodes d’extraction sélectives), ce qui permet d’établir univoquement la spéciation des éléments qui leurs sont associés, d’évaluer la réactivité des ETM vis-à-vis du pH, mais aussi d’évaluer la sélectivité des protocoles d’extraction séquentielle « BCR » et « Tessier ». La méthode de titrage acidimétrique apporte également des informations importantes sur la géochimie des éléments majeurs dans l’estuaire de l’Escaut et met en évidence les particularités minéralogiques des sols pollués en comparaison aux sédiments. Les études de cas démontrent que ces nouvelles techniques ont des applications dans le domaine de la géochimie de l’environnement, mais peuvent également être vouées, sur le moyen/long terme à une utilisation sortant du cadre des sciences exactes. En effet, l’identification/ discrimination des sources de pollutions et l’évaluation des risques de remobilisation des polluants métalliques font partie des nombreuses questions posées par la société aux scientifiques de l’environnement.
337

Desenvolupament de metodologia analítica per al seguiment d'herbicides fenoxiacètics i cafeïna en el medi ambient

Moret Solà, Sònia 15 December 2006 (has links)
El control d'herbicides i altres anàlits orgànics presents en el medi ambient constitueix una pràctica habitual en els laboratoris des de l'establiment de legislacions que limiten la seva concentració. Per aquesta raó, cal el desenvolupament de noves metodologies analítiques per al seguiment de compostos orgànics en el medi. Molt sovint aquests anàlits es troben a nivells traça en aigües i sòls, conjuntament amb un alt contingut de substàncies húmiques i fúlviques. Així, un dels reptes existents és el tractament de la mostra (extracció, concentració i "clean-up" d'aquests anàlits per a una bona quantificació). Aquests processos han de venir complementats per tècniques cromatogràfiques que permetin la mesura final dels anàlits.La investigació que es presenta en aquesta tesi es centra en el desenvolupament d'un mètode per a la determinació de 2,4-D i MCPA i els seus metabòlits fenòlics i d'un altre per a la determinació de cafeïna. El primer dels procediments desenvolupats s'ha aplicat al seguiment dels herbicides i els metabòlits fenòlics en sòls d'un camp de golf, mentre que el segon s'ha emprat per a la determinació de cafeïna en aigües naturals i, posteriorment, en aigües residuals. / The control of herbicides and other organic pollutants present in the environment has become a routine practise in many laboratories since the establishment of legislations that indicates the maximum allowed levels for these compounds. For this reason, it is necessary to develop new analytical methodologies for the monitoring of organic compounds in the environment. These analytes are often found at trace levels in waters and soils, with a high humic and fulvic organic matter content associated. One of the most important challenges in this field is the sample treatment (i.e. extraction, concentration and clean-up of the compounds to obtain a correct quantification). These procedures have to be coupled to chromatographic techniques to allow the determination of the compounds. This study is devoted to the development of a method for the determination of 2,4-D, MCPA and their phenolic metabolites and another method for the determination of caffeine. The first method has been applied for the monitoring of the herbicides and their metabolites in soils from a golf course; the second has been applied to the determination of caffeine in natural and urban wastewaters.
338

Geotechnical Behaviour Of Soil Containing Mixed Layered Illite-Smectite Contaminated With Caustic Alkali

Sankara, Gullapalli 04 1900 (has links)
The aim of the thesis has been to evaluate and understand the effect of caustic alkali solution of varying composition on the behaviour of expansive soil containing mixed layered minerals. Mixed layered minerals are formed of two or more kinds of inter grown layers, not physical mixtures. Illite - smectite is the most abundant and wide spread of the mixed layered clay minerals in sedimentary rocks and soils and also more common than either discrete illite or smectite. In geotechnical engineering much attention has not been paid to the behaviour of soils containing mixed layered minerals. Much less is known about the behaviour of these soils in polluted environment. Mixed layered minerals are more susceptible to environmental changes as the structural linkages between the layer minerals are weak compared to normal layered phyllosilicates. One important pollutant that can have considerable effect on the behaviour of soils is the caustic alkali contamination released from various industries. Recent studies have shown that the behaviour of even stable minerals is affected by alkali contamination. However, the effect of caustic alkali contamination on the behaviour of soils containing mixed layered minerals is not known and has been chosen for detailed study. Also to understand the mechanism of their interaction with alkali, it is necessary to study the effect of alkali solutions on the constituent clay minerals viz., montmorillonite and illite under similar conditions. To elucidate the mechanism of soil alkali interaction limited tests were conducted with simple electrolyte solution, as the alkali solution also acts as electrolyte apart from being alkaline. To confirm the mechanism of interaction, tests are also conducted on these soils with industrial spent liquor containing high caustic alkali and suspended alumina obtained from an alumina extraction plant treating bauxite with high alkali solutions at high temperatures. The results obtained in the laboratory are compared with the soil samples contaminated with leaking industrial Bayer's liquid in the field. Studies are also conducted to suggest remedial measures to control the adverse effects of alkali solutions on soil containing mixed layer minerals. The content of the thesis is broadly divide into 8 Chapters - viz., Introduction, Background and overview, Experimental program and procedures, Behaviour of soils containing mixed layer mineral illite - smectite (BCSI), Behaviour of montmorillonite and illite, Influence of Bayer's liquor and study on the field contaminated soils, Measures to control the influence of alkali contamination on BCSI and Summary and conclusions. The broad outline of these chapters is given in Chapter 1. A review of literature on the behaviour of soils containing different types of clay minerals with emphasis on mixed layer minerals has been presented in Chapter 2. The influence of different inorganic contaminants on the properties of soils in terms of their physical and chemical characteristics as well as their concentration has been summarized. The importance of changes in surface characteristics of soil particles and the changes in the thickness of diffuse double layer in altering the property of soils at low concentration of contaminants and changes in the mineralogy with high concentrated contaminants such as acids and alkalis has been highlighted. This forms the background information necessary to bring out the scope of the study. Four soils having different mineralogy have been used in this study. These soils are, black cotton soil containing predominantly mixed layer mineral illite - smectite mineral called rectorite, illite, montmorillonite (common smectite) and black cotton soil containing predominantly montmorillonite. The properties of the soils used are described in Chapter 3. Caustic alkali solutions of 1N, 4N concentration prepared in the laboratory and industrial alkali-spent liquor are used as contaminants. The spent Bayer's liquor had about 4N alkali concentration and 10% alumina in suspension. To simulate the effect of suspended alumina, two more caustic alkali solutions of 1N and 4N solutions containing 10% alumina by weight of solutions are also prepared. To isolate the effect of electrolyte solutions from that of alkali solution, two electrolyte solutions of 1N and 4N sodium chloride solutions are also used. Test procedures for conducting various tests such as pH, water adsorption characteristics, X-ray diffraction studies, SEM studies, thermal characteristics and geotechnical properties such as Atterberg limits, Oedometer tests and Shear Strength are given in this chapter. The test procedures are modified, wherever necessary, to bring out the effect of contaminants, particularly the effect of duration of interaction on the properties of soils. The source and properties of black cotton soil are presented in Chapter 4. Detailed x-diffraction studies have confirmed the presence of inter layered illite-smectite mineral viz., rectorite, which is uncommon in Indian expansive soils, and is classified as CH (Clay of high compressibility) as per ASTM soil classification. Effect of alkali and salt solutions of 1N and 4N concentration on all physico chemical and geotechnical properties are studied in this chapter. As it is known that presence of certain elements such as aluminium influence the soil alkali interaction, the effect of suspended alumina along with alkali solution has also been investigated. The effect of contaminating fluids such as 1N NaOH, 4N NaOH with and without alumina, 1N NaCl and 4N NaCl on the geotechnical properties of the soil has been studied. Mineralogical changes were observed by XRD and thermal studies in the soil treated with 4N NaOH solution and 4N NaOH + 10% alumina. The interlayer potassium of illite is released and potassium hydroxide is formed in soil treated with 4N NaOH. Swelling compounds such as sodium aluminium silicate hydroxide hydrate (SASH) has formed due to attack of 4N NaOH + 10% alumina on silica rather than on rectorite. Thus the studies clearly bring out that the rectorite present in the soil is dissociated only in the presence of strong alkali solutions of concentration of about 4N. The liquid limit of soil decreased with increase in the electrolyte concentration in the case of NaCl solutions. With 1N NaOH, the liquid limit of soil increased due to increase in the thickness of diffuse double layer due to increased pH. However, Proctor's maximum dry density increased and optimum moisture content decreased with 1N NaOH. With increase in the concentration of alkali solution to 4N, the rectorite dissociates into constituent minerals with the formation potassium hydroxide. The liquid limit of soil decreased probably due to the dominating influence of electrolyte nature of hydroxide solution over the effect of increased negative charge on clay particles due increase in the pH on the constituent minerals. Proctor's maximum dry density decreased and optimum moisture content increased with 4N NaOH. Sediment volume and oedometer free swell at seating/nominal surcharge load of 6.25 kPa of soil increased in 1N and 4N caustic alkali solutions, though by different mechanisms. The increase with 1N solution is essentially due to increased negative charges on clay mineral surface. However, the increase in swelling with 4N solution is associated with the dissociation of rectorite mineral and occurs in two distinct phases unlike in the case of 1N solution. While the first phase can be attributed to the effect of alkaline nature of the solution after reduction in its concentration due to reaction with rectorite and the consequent reduction in its electrolyte nature. The second phase is due to the swelling of the separated constituent minerals in the presence of excess of alkali and occurs after much delay. Consolidation behaviour of rectorite in 1N and 4N alkali solutions has been studied in two ways: 1). Loading without waiting for the second stage of swelling to occur, as in standard consolidation procedure and 2). Loading after completion of second stage of swelling which is occurring after considerable delay as explained earlier. Normally one would initiate loading after equilibrium is reached at the end of first stage of swelling and second stage of swelling is not suspected. As there is no second stage of swelling with 1N solutions, these two types of consolidation tests produced the same results. Abnormal rebound is observed during unloading with 4N solution in which loading cycle is initiated without waiting for second stage of swelling to complete. It is interesting to note that while the liquid limit of soil decreased with increase in the concentration of alkali solution, the swelling increased. The testing procedure and period of interaction as well as the concentration of alkali solution during the test in these two tests are different. The effects of alkali solution are more severe in case of liquid limit because of thorough mixing and consequent effective reaction during testing. Similarly, the volume changes in soil that has already reacted with 4N alkali solution when exposed to further to alkali contamination are considerably less compared to uncontaminated soil exposed to fresh contamination. The shear strength of soil treated with 4N-alkali solution has increased particularly after long period of interaction. This indicates that the soil after mineralogical changes posses good strength. Chapter 5 presents the effect of alkali and salt solutions on the physico chemical and geotechnical properties of component minerals of mixed layered illite/smectite. For this study, commercially obtained montmorillonite (bentonite), naturally occurring black soil containing montmorillonite and commercially pure illite are used. It was observed that montmorillonite alkali reactions would not produce significant mineralogical changes where as illite is dissociated into smectite with the formation of potassium silicate by the interaction of released potassium with soluble silica. This confirms that the ultimate products of rectorite with alkali solutions would be smectite and compounds of potassium. In the absence of mineralogical alterations the liquid limit of montmorillonite decreases due to suppression of diffuse double layer thickness due to dominating influence of alkali solutions on this highly active clay. However a small increase in liquid limit is observed in illite with alkali solutions. Thus the net effect of alkali on rectorite is to decrease the liquid limit with increase in alkali concentration. While the free swell and oedometer swelling of montmorillonite generally decreases with increase in the alkali concentration, they increase in illite. However, in both the minerals the swelling occurs only in one phase. Thus the second phase of swelling that has been observed in rectorite can be attributed to delayed swelling of montmorillonite that has been released by the attack of alkali on rectorite. The behaviour of black soil containing mixed layer mineral contaminated in the field and laboratory by leaking Bayer's spent liquor in an alumina extraction plant has been studied in Chapter 6. The Atterberg limits of the samples treated with liquor are reduced and sediment volume increased. Similarly the swelling at seating load in consolidation test is higher in sample compacted with water and inundated with liquor. X-ray diffraction studies showed that the mineralogical changes are similar to those occurred with 4N caustic alkali solution. The mineralogical and micro structural changes in the soil samples that are contaminated by leaked spent liquor in the field are relatively more marked. Also the behavior of highly montmorillonite clay, bentonite, has been studied contaminated with liquor in the laboratory. The study on the effect of high concentrated alkali solutions on montmorillonite can be useful to study the effect of interaction on the dissociated montmorillonite. These studies are helpful to suggest some possible remedial measures to control the adverse effect of alkali on soils. Possible Remedial schemes that can be adopted before and after contamination of the soil to control the adverse effect of alkali solutions on the black cotton soil containing mixed layered mineral are listed and their effectiveness examined in Chapter 7. The suggested remedial measures include flushing with water to dilute the effect of alkali, neutralisation with dilute hydrochloric acid, stabilisation of soil with lime and calcium chloride and use of impervious membrane to separate the foundation soil from alkali solution. The effectiveness of different measures as well as the method of their application has been described. Efforts are made to understand the mechanism of remedial action. Consolidation tests conducted on soil contaminated with 4N alkali solution and inundated with water showed increased swelling due to dilution of the alkali concentration. Though the swelling of contaminated soil can be controlled by passing dilute hydrochloric acid (1N), the method is not advocated as it can lead to ground water contamination. Mixing the soil with solutions containing up to 5% by weight of calcium compound in water could not prevent the alkali induced heave in the long run when inundated with 4N alkali solution. This was due to dissolution of silica by the strong alkali solutions and formation of swelling compounds such as sodium aluminium silicate hydroxide hydrate (SASH). The formation of sodium aluminates occurred only when the alkali solution contained alumina or soil contained calcium compounds. There are no significant variations in the effects of calcium chloride or calcium hydroxide on contaminated soil. Replacing the foundation soil with soil thoroughly contaminated with 4N alkali solutions and controlling the migration of contaminants into the foundation soil using high-density polyethylene (HDPE) geosynthetic membranes can be an effective measure to control the heaving in alkali contaminated foundation soil containing interstratified illite – smectite. Summary and the major conclusions of the thesis are presented in Chapter 8.
339

Remedial Measures For Alkali Induced Heave In Soils

Reddy, P Hari Prasad 06 1900 (has links)
Sub-surface soil pollution by various processes with high concentration of contaminants can significantly alter geotechnical properties of soils causing unexpected failures of structures founded on them. The changes can occur due to alteration in soil water interaction processes and/or by intense chemical interactions leading to mineralogical and microstructural changes. Behaviour of soil upon contamination with alkali pollutant is one of the major concerns faced by the geotechnical researchers in recent years. In the present study an attempt has been made to understand the role of mineralogical and morphological changes on the volume change (swelling and compressibility) behaviour of soils by prolonged interaction with caustic alkali pollutant. Based on the results it has been proposed to develop remedial measures to nullify and/or control the detrimental effects. A comprehensive experimental program has been planned to achieve these objectives. The experimental investigations carried out and results obtained are presented in eight chapters as follows. The broad outline of thesis is given in Chapter 1. A detailed review of literature on the type of phyllosilicate minerals present in various soils is presented in Chapter 2 with a view to select most common soils for the study. Various sources of contaminants and their effect on the properties of soils have been summarised. Present understanding on the mechanisms leading to changes in the soil properties has been elucidated. The occurrence of alkali contamination has been reviewed in this chapter which enabled to select the ranges of alkali concentration for the study. Based on the review of various methods employed to improve the soil behaviour, the use of salt solutions such as potassium chloride (KCl) and magnesium chloride (MgClB2B) and pozzolanic fly ash has been considered to counteract the alkali effects. Based on this detailed survey, the scope of the present investigation has been elaborated at the end of the chapter. Chapter 3 presents different materials used and various methods adapted in the current study. Three soils having different mineralogy have been used in this study to bring out the effect of alkali solutions on their volume change behaviour. While two soils were classified as CH, the third one was of CL. The CH soils used in this study are called Black Cotton Soils in India. One soil contained predominantly mixed layer illite-smectite mineral (BCS I) and the other contained predominantly montmorillonite mineral (BCS M). The locally available CL soil used is referred as red earth (RE) whose predominant mineral is kaolinite. Alkali solutions of concentration ranging from 1N to 4N are prepared using sodium hydroxide pellets (NaOH). Slat solutions viz. potassium chloride and magnesium chloride and pozzolanic fly ash obtained from Neyveli thermal power plant (NFA) are used as additives. Procedures to determine the geotechnical properties of the soils such as Atterberg limits, specific gravity, grain size distribution and compaction characteristics are given in this chapter. Procedures for identifying the mineral and microstructure of the soils such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) are also presented in this chapter. Standard oedometer tests with fixed ring apparatus were performed to study the volume change behaviour of soils under various conditions. Volume change behaviour of soils in the presence of alkali solutions is presented in Chapter 4. In order to assess the effect of alkali solution on the volume change behaviour of soils it is necessary to study their behaviour in water. Relatively very high swell was observed in BCS M, whereas the swell in RE and BCS I soil specimens was very low and moderate respectively. Adsorption of water to form diffuse double layer near the negative surface of clay mineral particles leads to swelling in soils. The thickness of the double layer depends on the cation exchange capacity of soil. Higher cation exchange capacity leads to development of higher thickness of double layer thereby inducing swell. The higher is the swell the higher would be the compression. The effect of different concentrations (1N, 2N and 4N) of alkali solutions on volume change behaviour of three types of soil is presented in this chapter. All the three soils studied, irrespective of their mineralogical composition, exhibited high swell when contaminated with alkali solution compared to water. However, the extent and nature of swell varied both with the type of mineral present in the soil and concentration of sodium hydroxide solution. The swell in BCS I increases with increase in the concentration of the alkali solution. In 1N alkali solution the high swell occurred is due to the breaking up of interstratified mineral into constituent minerals initiated by the leaching of potassium from soil due to high pH. In 2N and 4N alkali solutions, the observed high swell occurs in two stages: the first stage of swelling is due to breaking up of interstratified mineral into constituent minerals initiated by the leaching of potassium from soil due to high pH, and the second stage of swelling is due to the formation of new minerals (Zeolite P in case of 2N NaOH and Sodalite in case of 4N NaOH). The nature of swell is influenced by the formation of minerals depending on the concentration of alkali solution. Thus the studies clearly indicate that the swelling is due to the release of potassium from soil at higher pH and due to mineralogical changes depending upon the concentration of alkali solution. Confirmative tests were conducted to support the release of potassium during first stage of swelling and mineralogical alteration after second stage of swelling. The high swell in BCS M becomes higher in 1N alkali solution. The increased swell in the soil with 1N alkali solution is due to increase in the ion exchange capacity of soil at higher pH. The swell which is very high with 1N alkali solution decreases with 2N alkali solution. With increase in concentration of alkali solution to 2N, the increase in the negative charges due to alkalinity becomes less and the swell decreases due to dominant influence of electrolyte effect. With increase in the concentration of alkali solution to 4N, both these influences become less and the amount of swell remains the same. Significant increase in the amount of swell is observed with alkali solution even in non-swelling red earth. The nature of swell as well as the formation of minerals is not altered by the change in the concentration of alkali solution. At any concentrations of alkali solution the observed swell is noticed in two stages – very small first stage of swell due to lower ion exchange capacity and considerable second stage of swell due to the formation of new mineral (Sodalite) with any concentration of alkali solution. It has been observed that the normal hyperbolic swell – compression relationship does not apply for the alkali contaminated soils. The higher swell does not result in higher compression, as the swollen soil remains fairly incompressible. Analysis of the results and detailed studies on micro-structure and mineralogy of soils bring out mechanism of alkali effects. Comparing the swell behaviour of soils with alkali solutions brings out the relative importance of various mechanisms proposed for induced heave. The effect of salt solutions used viz., potassium chloride and magnesium chloride to restrict the influence of alkali solution on the volume change behaviour of BCS I is presented in Chapter 5. These salts react with alkali solution to form partly soluble potassium hydroxide (KOH) and sparingly soluble magnesium hydroxide (Mg(OH)B2B) respectively. Presence of ionic potassium can bring out potassium linkages, by bridging potassium ion between the unit layers of expansive minerals reducing the swell. Magnesium ions can restrict swell, by replacing the monovalent exchangeable ions present in soil and/or by formation of magnesium hydroxide which is a weak cementing agent. The effect of potassium hydroxide on the volume change behaviour of soil has been studied and the results clearly indicate that fixation of potassium is facilitated by high pH of KOH solution. Addition of potassium chloride has partially controlled the alkali induced heave in soil. Of the two stages of swelling observed in soil in the presence of 4N alkali solution, only the first phase of swelling is reduced which may be due to electrolyte effect and/or due to fixation of potassium. The second phase of swelling that occurs in soil due to mineralogical changes can not be controlled with the use of potassium chloride. Addition of magnesium chloride salt solution also reduced the effect of alkali solution mostly due to suppression of thickness of diffuse double layer that develops near clay surface. The nature of reduction in the swell of alkali solution during the two stages by magnesium chloride is similar to that of potassium chloride. The partial reduction in swell of soil in the presence of salt solutions leads to reduction in the compressibility of soil. Detailed data and analysis, presented in this chapter, bring out the role of microstructure and mineralogy on soil behaviour. The abnormal volume changes due to mineralogical changes affected by high concentration of sodium hydroxide could not be controlled with salt solutions, attempts are made to utilize fly ash to control the alkali induced heave. The pozzolanic compounds produced by hydration of compounds presented and/or produced by lime silica reactions can bind the soil particles controlling the swelling. The results on the effectiveness of fly ash on BCS I soil are presented in Chapter 6. The physical and chemical properties of fly ash along with the mineralogical composition and the microstructure of the fly ash are also presented in this chapter. Before studying the effect of fly ash to control the volume change behaviour of soils in presence of alkali solutions, the effect of alkali solutions on the volume change behaviour of fly ash itself has been studied. The results showed no noticeable changes in swell and compressibility of fly ash, encouraging its use for controlling the alkali induced swell. The ability of different percentages (10%, 20% and 50%) of fly ash to control alkali induced volume changes in soil with varying concentrations of alkali solutions, viz., 1N, 2N and 4N has been studied. The results indicate that the addition of fly ash effectively reduces alkali induced swell in BCS I. The effectiveness of fly ash increases with increase in its content. The reduction in swelling of soil is partially due to replacement of soil with fly ash and mainly due to cementation of soil particles by pozzolanic compounds produced. More than 25% of fly ash is generally required to significantly reduce the swell in alkali solutions. The reduction in swell with addition of fly ash also leads to lower compressibility of soil. The role of microstructure and mineralogy in controlling the volume change behaviour are also presented in this chapter. The effectiveness of fly ash in controlling the volume changes in RE and BCS M due to alkali solutions are studied in Chapter 7. The addition of fly ash completely eliminates the swelling in both the soils. The reduction in swelling up on addition of fly ash is essentially due to efficient binding of particles by pozzolanic reaction compounds. Addition of even 10% of fly ash is sufficient in completely arresting the swelling of RE and BCS M by alkali solution. Detailed data and analysis of the results to bring out the role of microstructure and mineralogy on the behaviour of soils are presented. It is clear that relatively higher amounts of fly ash is required to control the alkali induced heave in BCS I than in other soils at higher concentrations of alkali solution. The major conclusions from the study are presented in Chapter 8. The thesis demonstrates that alkali contamination alters mineralogy and morphology of soils affecting the volume change behaviour significantly. The study also brings out that fly ash can control the undesirable swell that occurs in most types of soils by cementing the soil particles to resist swelling. Though the amount of fly ash required to control the alkali induced heave varies, 25% of fly ash is often sufficient.
340

The potential for groundwater contamination arising from a lead/zinc mine tailings impoundment.

Vergunst, Thomas Maarten. January 2006 (has links)
The mining industry produces vast quantities of overburden and mill tailings. In many instances the disposal of these wastes on the Earth's surface have caused local, and occasionally even regional, water resources to become contaminated. Contamination typically arises from the oxidation of metal sulfide minerals contained within these wastes. Upon oxidation these minerals release sulfate, their associated metal cations and acidity into solution. This study investigated the potential for groundwater contamination arising from a Pb/Zn tailings impoundment in the North West Province of South Africa (Pering Mine). The tailings is composed predominantly of dolomite, which imparts to the material an alkaline pH and a high acid buffering capacity. Acid-base accounting (ABA) established that the capacity of the tailings to buffer acidity surpasses any acid producing potential that could arise from pyrite (FeS2), galena (PbS) and sphalerite (ZnS) oxidation. These minerals account for about 3 to 6% of the tailings by mass. Total elemental analysis (XRF) showed that the material has high total concentrations of Fe (19083 mg kg-I), Zn (5481 mg kg-I), Pb (398 mg kg-I), S (15400 mg kg-I), Al (9152 mg kg-I) and Mn (29102 mg kg-I). Only a very small fraction of this, however, was soluble under saturated conditions. An estimation of potentially available concentrations, using the DTPA extraction method, indicated that high concentrations of Zn (1056 mg kg-I), and moderate concentrations of Pb (27.3 mg kg-I) and Cu (6.01 mg kg-I) could potentially be available to cause contamination. A number of leaching experiments were undertaken to accurately quantify the release of elements from the tailings material. These experiments were aimed at determining the potential for groundwater contamination and also provided a means whereby the long-term release of contaminants could be modelled using the convection-dispersion equation for solute transport. Four leaching treatments were investigated. Two consisted of using distilled water under intermittent and continuous flow, while a third used intermittent flow of deoxygenated distilled water to assess leaching under conditions of reduced oxygen. The.mobilisation of potential contaminants under a worst case scenario was assessed by means of leaching with an acetic acid solution at pH 2.88 (after the US Environmental Protection Agency's toxicity characteristic leaching procedure). The acid buffering potential of the tailings was considerable. Even after 8 months of weekly leaching with 1 pore volume of acetic acid solution the pH of the effluent was maintained above pH 5.90. The protracted acidity caused very high concentrations of Pb, Zn, Mu, Ca, Mg, Hg and S to be released into solution. Leaching the tailings with distilled water also caused the effluent to have noticeable traces of contamination, most importantly from S, Mg, Mu and Zn. In many instances concentrations significantly exceeded guideline values for South African drinking water. Modelling solute transport with the convectiondispersion equation predicted that sol- and Mu contamination could persist for a very long period of time. (±700 years under continuous saturated leaching), while Mg and Zn concentrations would most likely exceed recommended limits for a much shorter period of time (±300 years under the same conditions). In light of the various column leaching experiments it was concluded that seepage from the Pering tailings impoundment could cause groundwater contamination. A drill-rig and coring system were used to collect both tailings and pore-water samples from eight boreholes spread out across the tailings impoundment. These investigations showed that most of the impoundment was aerobic (Eh ranged from +323 to +454 mY) and alkaline (pH 8.0 to 9.5). This chemical environment favours sulfide oxidation and as a consequence high concentrations of S have been released into the pore-water of the impoundment (S concentrations ranged from 211 to 1221 mg r l ). The acidity released as a by-product of sulfide oxidation was being buffered by dolomite dissolution, which in turn was releasing high concentrations of Mg (175 to 917 mg r l ) and Ca (62.6 to 247 mg r l ) into solution. Metal concentrations in the pore-water were low as a result of the strong metal sorbing capacity of the tailings and possible secondary precipitation. The only metal which significantly exceeded recommended limits throughout the impoundment was Hg (concentrations were between 100 and 6000 times the recommended limit of 0.001 mg r l ). Under the current geochemical conditions it is expected that Hg, S and Mg will likely pose the greatest threat to groundwater. The main concerns associated with mine tailings are that of mine drainage and dust blow off..In order to eradicate the latter problem, the tailings impoundment at Pering Mine was covered with a layer of rocks. Modelling the water balance of the impoundment using the computer model HYDRUS-2D showed that the rock cladding has potentially increased the volume of drainage water seeping from the impoundment. In light of the leaching experiments and field work, which proved that water passing through the tailings became enriched with various potentially toxic elements, it is expected that the problem of groundwater contamination around Pering Mine has been further exacerbated by the rock cladding. It was therefore concluded that there would be a strong likelihood of groundwater contamination in the vicinity of the mine. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.

Page generated in 0.1003 seconds