Spelling suggestions: "subject:"soil quality."" "subject:"oil quality.""
41 |
Imidacloprid Persistence, Mobility, and Effect on Soil Quality and Ecosystem FunctionHardin, Joanna, Brown, Stacy D., Scheuerman, Phillip, Maier, Kurt 01 November 2017 (has links)
No description available.
|
42 |
Spatial and Temporal Distribution of Total Phosphorus Concentration in Soil and Surface Water in the Everglades Protection AreaSarker, Shishir Kumar 26 June 2018 (has links)
Draining of the Everglades allowed for the expansion of urban and agricultural development, reducing half of the size of the historic Everglades. The detrimental cascading effect on the Everglades ecosystem function is related to the total phosphorus (TP) concentrations of water inflow, the inflow rate and the distance from the discharge point. As Everglades restoration has approached 15 years since the inception of the Comprehensive Everglades Restoration Plan (CERP), there is a need to assess its progress across the ecosystem. Available data from 2004 to 2014 were collected for soils and from 2004 to 2016 for water to understand a decade of trends. Both Geographic Information System (GIS) and statistical data analysis were applied to determine changes in water quality and soil chemistry. Key findings indicate a declining trend in water TP, with mixed results for soil. Higher TP concentrations (>10 µg/L) were prevalent the areas less than 1 km from a canal or water discharge point for both soil and water. The TP in surface water was higher in the wet season compared to the dry season across the EPA possibly associated with hydrologic, climatic or other factors.
|
43 |
Litter input, soil quality and soil carbon dioxide production rates in varying riparian land uses along a first order stream in Southern Ontario, Canada.Raimbault, Beverly Anne January 2011 (has links)
Forested riparian zones, which function as a buffer between agricultural fields and streams, filter out contaminants and sediment from the fields thereby improving water quality, cool the water with shade from trees, stabilize the stream bank and provide habitat for wildlife. However, in many agricultural areas, riparian vegetation has been removed for crop production or pasture purposes. Riparian restoration or rehabilitation is a way of restoring riparian ecosystem functions. This study examines the effect of riparian rehabilitation via tree planting along a first-order creek in Southern Ontario, 25 years after rehabilitation. Litter input, soil quality parameters and soil CO2 production rates were determined for the rehabilitated riparian zone, a grass-forb riparian zone and a natural forest riparian zone. Total litter input was 480, 580 and 295 g m-2 y-1 for the rehabilitated riparian zone, grass riparian zone and forest riparian zone, respectively. Soil bulk density was higher and hydraulic conductivity was lower for the rehabilitated riparian zone compared to the grass riparian zone and forest riparian zone. The concentration and soil stock of organic carbon and total nitrogen was lowest for the rehabilitated riparian zone compared to the grass riparian zone and forest riparian zone which were similar. The effect of riparian zone on soil CO2 production rates varied over the season. From spring to mid-summer, rates were 167, 224 and 104 mg C m-2 h-1 for the rehabilitated riparian zone, grass riparian zone and forest riparian zone, respectively. Soil CO2 production rates did not differ significantly (p < 0.05) between riparian zones for late summer and fall sampling dates. Soil CO2 production rates were significantly negatively correlated with soil C/N and positively correlated with soil pH and litter input. Soil CO2 production rates were positively correlated with soil temperature (r = 0.32) and negatively correlated with soil moisture (r = -0.48). Of the three riparian zones, the natural forest riparian zone exhibited the least amount of seasonal fluctuation for soil CO2 production rates, soil moisture and temperature. Results from this research indicated that more time is needed before soil quality and soil CO2 production rates of the rehabilitated riparian zone reach values similar to the natural forest riparian zone.
|
44 |
The long-term effects of farming practices on soil quality, as influenced by farmer attitude and farm characteristicsBoehm, Marie Margaret 01 January 1996 (has links)
Several farming systems, in a region of the Dark Brown soil zone west of Saskatoon, were investigated to identify farming practices that are soil-conserving, or soil-degrading, by measuring their effects on soil quality. The study identified soil properties that are practical and measurable indicators of soil quality, and factors that influence farmers adoption of soil-conserving farming practices. On coarse-loamy to sandy-textured, glaciolacustrine soils, farming systems with long rotations and adequate fertilizer inputs or permanent cover, were associated with a higher quality of soils than tillage-intensive crop-fallow systems. Better soil quality was attributed to the larger addition of crop residues, enabling long-rotation soils to maintain a relatively large pool of mineralizable C, N, and P, and a large microbial biomass. The larger microbial biomass was an indicator of the improved quality of continuously cropped soils as a habitat for microorganisms, and their increased ability to cycle nutrients and C. Other indicators of improved soil quality were increased soil thickness, organic C content, infiltration rate, and aggregation, and decreased bulk density and salinity. Slightly lower A horizon pH was the only negative indicator of quality associated with the continuously cropped soils. The ability of farmers to adapt the longer-rotation systems was constrained by capital and labour limitations, management skills or lifestyle choices. Farmers with limited capital were less willing to invest in the inputs required to continuously crop, because they perceived an increase in the risk of crop failure in that system. Farmers with a large land base, or with off-farm employment, may not have the time or labour to seed and harvest all of their land every year. Among the study farms, the farmers who were best able to adopt continuous cropping systems were those involved in multifamily, mixed farms. There were less labour and capital limitation to continuous cropping on multifamily farms. On mixed farms, where income was derived from both livestock and grains, the risk of reduced grain yield was less serious. Appropriate use of low quality, erodible soils was often an important consideration of farmers who raised cattle.
|
45 |
Soil And Water Analysis Techniques For Agricultural ProductionMaral, Nuh 01 May 2010 (has links) (PDF)
ABSTRACT
SOIL AND WATER ANALYSIS TECHNIQUES
FOR AGRICULTURAL PRODUCTION
Maral, Nuh
M. Sc., Department of Chemistry
Supervisor: Prof. Dr. G. inci Gö / kmen
May 2010, 108 pages
In Turkey, usage of increasing amounts of fertilizers and pesticides by some unconscious farmers cause soil pollution and soil infertility for the crop production. Usage of water in excessive amounts and/or in poor quality for irrigation creates problems during the plant production. So in this study, soil and water samples were analyzed by using simple and reliable techniques for the soil and water quality in laboratories of METU and Soil Fertilizer and Water Resources Central Research Institute Laboratory in Ankara. The soil and water samples were collected using the standard techniques from Ankara, Bolu, Ç / orum and Kirikkale.
According to the soil test results, the textures of the soil samples are found as loam and clay loam. The total salt content of the soil samples are between 0.033 &ndash / 0.063 % (w/w), meaning they are low salinity soils (total salt less than 0.15 % w/w). The pH of the soil samples are between 7.86&ndash / 8.15, they are slightly alkaline. The phosphorus concentrations of soil samples are in a range 4.95 to 35.45 P2O5 kg/da. Some of the soil samples have too high phosphorus content (greater than 12 P2O5 kg/da). The potassium content of soil samples are found between 141&ndash / 286 K2O kg/da, so the soil is efficient for crop production. Lime content of the soil samples is between 1.04&ndash / 2.67 % (w/w) CaCO3. It means all of the soil samples are calcareous but it is not too high for the agricultural production. Organic matter content of soil samples are found between 0.83&ndash / 2.04 % (w/w). This means the soils are limited in their organic matter content for the crop production.
Analysis of 22 water samples yielded EC values between 0.384 &ndash / 1.875 dS/m. Water samples have moderate to high-salinity (if EC values between 0.205 and 2.250 dS/m), yet these can be used for the irrigation of the crops. pH values of water samples are found between 7.18-8.10, meaning that they are slightly alkaline. Bicarbonate concentrations of 19 of the water samples are greater than 200 mg/L. These waters may not be suitable for irrigation of ornamental plants. All of the water samples, except water samples from Gö / lbaSi, have sodium absorption ratio (SAR) values between 1 and 9. Water samples with low SAR values, except water samples from Gö / lbaSi, can be used for irrigation of almost all soils with little danger of developing harmful levels of sodium. The Residual Sodium Carbonate (RSC) values of water samples Ankara Gö / lbaSi and Sincan-1 are greater than 2.50 meq/L and these water samples are not suitable for the irrigation. RSC values of Etimesgut, Sincan-2 and Kazan water samples are positive and lower than the value 2.00 meq /L. All the other water samples have negative RSC values so they are the safe to use for irrigation.
It has been observed that development of practical field analysis techniques for all soil and water quality parameters may be possible with exception of micronutrient determination. For determining soil and water quality parameters in the rural areas there is a need to establish a small laboratory with necessary equipment and apparatus and training one or two farmers. With the experience gained in this study, some of these techniques may be adapted to the rural field applications, so soil and water may be tested by the farmers for better yields.
|
46 |
Development Of Risk Based Soil Quality Standards For TurkeyIpek, Hatice Meltem 01 March 2011 (has links) (PDF)
Soil quality standards (SQSs) are one of the most important elements of management system for contaminated sites. In order to manage risks associated with soil contamination, risk based SQSs are used worldwide. However, in Turkey, the Soil Pollution Control Regulation in force was focusing mainly on the use of stabilized sludge on soil and was including standards for a limited number of parameters, mainly metals and some organic chemicals. Thus, existing SQSs were far away from providing common criteria for assessment of the soil quality.
In this study, the aim was to develop human health risk based SQSs for Turkey. For derivation of risk based SQSs, the conceptual framework and technical infrastructure were established. SQSs were derived for 151 chemical substances and for three different land use types by incorporating generic site characteristics for Turkey. Since SQSs are highly sensitive to site conditions and chemical-specific data used in calculations, a Microsoft Excel based exposure model was developed as a technical tool. This tool serves for calculation of generic and site-specific SQSs and maintenance of the currency of the standards by allowing periodic update of data used in calculations. Besides, a hydrogeologic database was developed to provide information on the general soil and hydrogeologic characteristics that are used in derivation of SQSs. This database is ultimately, expected to serve for development of conceptual site models, sampling strategies, and derivation of dilution factors during risk assessment studies.
As a result, this study presents a general perspective and approach for derivation of human health risk based SQSs. It is believed that the developed conceptual and technical infrastructure will contribute to contaminated site management and risk assessment studies conducted by the regulatory authorities and the other stakeholders in Turkey.
|
47 |
The assessment of soil microbial and plant physiological changes during the treatment of soil containing bromacil, tebuthiuron and ethidimuron / M. de BeerDe Beer, Misha January 2005 (has links)
Increased amounts of pesticide production and application of pesticides for agriculture,
plant protection and animal health has resulted in soil, water and air pollution,
consequently relating a serious risk to the environment and also to human health.
Pesticides include several groups of compounds, herbicides, insecticides, rodenticides and
fumigants consisting of several hundred individual chemicals. Herbicides are an integral
pan of modem agriculture and for industries requiring total vegetation control. Most
herbicides are soil applied and more and more concern is raised that herbicides not only
affect target organisms but also the microbial community present in soil. The ESKOM
sub-station Zeus, in Mpumalanga (South Africa) used to apply an industrial weed control
program for the eradication of vegetation, which led to the contamination of soil by
several herbicides. These herbicides consisted of Bromacil, Tebuthiuron and Ethidimuron
which are all photosynthesis inhibitors, more specifically, they disrupt the plastoquinone
protein during electron transport at photosystem I1 (PSII). In this study the effect of biostimulation
and bio-augmentation of a specific bioremediation agent (B350) as prescribed
by ESKOM, on residual herbicides, Bromacil, Tebuthiuron and Ethidimuron was
evaluated by monitoring the soil physical and chemical properties, microbial attributes,
including potential microbial activity and community structure, as well as the
physiological effect experienced by plants (Cynodoh dactylon and Zea mays). Results
from soil physical and chemical analyses were correlated with results obtained for the
functional and structural diversity of microbial communities. All results were investigated
through statistical and multivariate analysis and the most prominent soil physical and
chemical parameters that influence the biological and biochemical properties of the soil
were identified. Results obtained from this study indicated that there were no significant
difference (p < 0.05) between the treatments, with bioremediation agent, irradiated agent
and without the agent based on results obtained from soil microbial properties and plant
physiology. Before the trial started the uncontaminated soil showed an active microbial
function, characterised by dehydrogenase, urease and arylsulphatase activity, but
community structure was not very diverse. The contaminated soil, irradiated contaminated
soil and silica sand showed less enzymatic function and was characterised by
phospholipid fatty acid groups, mid-branched saturated fatty acids, terminally branched
saturated fatty acids, normal saturated fatty acids and monosaturated fatty acids which are
indicative of microorganisms that survive better in harsh environments. Three weeks after
the addition of the specific bioremediation took place, the uncontaminated soil showed an
increase in P-glucosidase activity and percentage organic carbon (%C), which could be a
result of the presence of available plant material. Furthermore, an increase in major PLFA
groups were seen, suggesting that an increase in diversity within the soil community
occurred. The contaminated soil, irradiated contaminated soil and silica sand once again
was characterised by a low microbial function and diversity, showing no improvement.
Fluorescence data clearly show a decline in PS 11 function that result in the decline of the
rate of photosynthesis, which was seen from COz gas exchange rates. Furthermore, the
decrease in photosynthetic activity after three weeks was too severe to supply additional
information about the mechanism within photosynthesis or the photoprotective
mechanisms. A detailed study was conducted in which a 3: 1 dilution of contaminated soil
with silica sand, was also monitored for changes within plant physiology. Results revealed
that inhibition of PS I1 function already takes place within a few days time and the decline
in photosynthesis is as a result of electron transport that does not supply adenosine
triphosphate (ATP) and P-nicotinamide adenine dinucleotide (NADPH) to the Calvin
cycle (or Reductive Pentose Phosphate pathway). It does not appear that rubulose-1,sbisphosphate
carboxylase-oxygenase (Rubisco) is affected within the Calvin cycle. As a
result of PS I1 function failure, reaction centres are damaged by the production of harmful
singlet oxygen and photoprotective mechanisms (xanthophyll cycle) can not be activated.
Thus, except for dealing with ineffective electron transport, additional damage is caused
to physiological functions. After six weeks a decrease in the estimated viable biomass for
all growth mediums was found. Results of the of trans- to cis- monoenoic fatty acids and
cyclopropyl fatty acids to their monoenoic precursors ratios indicated that the soil
microbial community for the contaminated growth mediums, all experienced nutritional
stress throughout this trail. The specific bioremediation agent (B350) used, seemed to
have no effect on the microbial function and community structure within soil and as agent
had no effect on the residual herbicides or the plant physiology which experienced an
extreme decline in major metabolic functions. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2
|
48 |
Soil microbial community function and structure as assessment criteria for the rehabilitation of coal discard sites in South Africa / Sarina ClaassensClaassens, Sarina January 2003 (has links)
Mining activities cause severe disturbance to the soil environment in terms of soil quality
and productivity and are of serious concern worldwide. Under South African legislation,
developers are required to ecologically rehabilitate damaged environments. The application
of agronomic approaches for the rehabilitation of coal discard sites has failed dismally in
the arid areas of southern Africa. It is obvious that compliance with mitigation and
rehabilitation requirements cannot be enforced without a thorough understanding of the
ecological principles that ensure ecological stability and subsequent sustainability of soil
ecosystems. Soil micro organisms are crucial role-players in the processes that make energy
and nutrients available for recycling in the soil ecosystem. Poor management practices and
other negative impacts on soil ecosystems affect both the physical and chemical properties
of soil, as well as the functional and structural properties of soil microbial communities.
Disturbances of soil ecosystems that impact on the normal functioning of microbial
communities are potentially detrimental to soil formation, energy transfers, nutrient
cycling, plant reestablishment and long-term stability. In this regard, an extensive overview
of soil properties and processes indicated that the use of microbiological and biochemical
soil properties, such as microbial biomass, enzymatic activity and the analysis of microbial
community structure by the quantification of specific signature lipid biomarkers are useful
as indicators of soil ecological stress or restoration properties because they are more
responsive to small changes than physical and chemical characteristics. In this study, the
relationship between the physical and chemical characteristics and different biological
indicators of soil quality in the topsoil covers of seven coal discard sites under
rehabilitation in South Africa, as well as three reference sites was investigated. Through the
assimilation of basic quantitative data and the assessment of certain physical, chemical and
biological properties of the topsoil covers obtained from the various coal discard sites as
well as the reference sites, the relative success or progress of rehabilitation and the possible
correlation between the biological indicators of soil quality and the establishment of self sustaining
vegetation covers was determined. Results from soil physical and chemical
analyses and percentage vegetation cover were correlated with the results obtained for the
functional and structural diversity of microbial communities at the various sites. All results
were investigated through statistical and multivariate analysis and the most prominent
physical and chemical parameters that influence the biological and biochemical properties
of the soil and possibly the establishment of self-sustainable vegetation cover on these
mine-tailing sites were identified. Results obtained from this study indicated no significant
difference (p>0.05) between the various discard sites based on conventional
microbiological enumeration techniques. However, significant differences (p<0.05) could
be observed between the three reference sites. All enzymatic activities assayed for the
rehabilitation sites, with the exception of urease and alkaline phosphatase displayed a
strong, positive association with the organic carbon content (%C). Ammonium
concentration had a weak association with all the enzymes studied and pH only showed a
negative association with acid phosphatase activity. A positive association was observed
between the viable microbial biomass, vegetation cover and the organic carbon content,
ammonium, nitrate and phosphorus concentrations of the soil. The various rehabilitation
and reference sites could be differentiated based on the microbial community structure as
determined by phospholipid fatty acid (PLFA) analysis. It is hypothesised that the
microbial community structure of the Hendrina site is not sustainable when classified along
an r-K gradient and that the high percentage of vegetation cover and high levels of
estimated viable microbial biomass are an artificial reflection of the current management
practices being employed at this site. Results obtained during this study, suggest that an
absence or low percentage of vegetation cover and associated lower organic matter content
of the soil have a significant negative impact on soil biochemical properties (enzymatic
activity) as well as microbial population size. Furthermore, prevailing environmental
physico-chemical and management characteristics significantly influences the vegetation
cover and subsequently the microbial community structure. The results indicate that the
microbial ecosystems in the coal discard sites could become more stable and ecologically
self-regulating, provided effective management to enhance the organic carbon content of
the soil. This could enhance nutrient cycling, resulting in changes of soil structure and
eventually an improved soil quality which could facilitate the establishment of self sustaining
vegetation cover. Results obtained during this study suggest that a polyphasic
assessment of physical and chemical properties; microbial activities by enzymatic analysis;
the characterisation of microbial community structure by analysis of phospholipid fatty
acids; and the multifactorial analysis of the data obtained can be used as complementary
assessment criteria for the evaluation of the trend of rehabilitation of mine tailings and
discard sites. Strategic management criteria are recommended based on the soil
quality environmental sustainability indices to facilitate the establishment of self sustainable
vegetation covers. The contribution of this research to soil ecology is
significant with regards to the intensive investigation and explanation of characteristics and
processes that drive ecological rehabilitation and determine the quality of the soil
environment. The multidisciplinary approach that is proposed could, furthermore, assist in
the successful rehabilitation and establishment of self-sustaining vegetation covers at
industrially disturbed areas, as well as assist in improving degraded soil quality associated
with both intensive and informal agriculture. Additionally, this approach could negate the
negative social and environmental impacts frequently associated with these activities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2004.
|
49 |
The assessment of soil microbial and plant physiological changes during the treatment of soil containing bromacil, tebuthiuron and ethidimuron / M. de BeerDe Beer, Misha January 2005 (has links)
Increased amounts of pesticide production and application of pesticides for agriculture,
plant protection and animal health has resulted in soil, water and air pollution,
consequently relating a serious risk to the environment and also to human health.
Pesticides include several groups of compounds, herbicides, insecticides, rodenticides and
fumigants consisting of several hundred individual chemicals. Herbicides are an integral
pan of modem agriculture and for industries requiring total vegetation control. Most
herbicides are soil applied and more and more concern is raised that herbicides not only
affect target organisms but also the microbial community present in soil. The ESKOM
sub-station Zeus, in Mpumalanga (South Africa) used to apply an industrial weed control
program for the eradication of vegetation, which led to the contamination of soil by
several herbicides. These herbicides consisted of Bromacil, Tebuthiuron and Ethidimuron
which are all photosynthesis inhibitors, more specifically, they disrupt the plastoquinone
protein during electron transport at photosystem I1 (PSII). In this study the effect of biostimulation
and bio-augmentation of a specific bioremediation agent (B350) as prescribed
by ESKOM, on residual herbicides, Bromacil, Tebuthiuron and Ethidimuron was
evaluated by monitoring the soil physical and chemical properties, microbial attributes,
including potential microbial activity and community structure, as well as the
physiological effect experienced by plants (Cynodoh dactylon and Zea mays). Results
from soil physical and chemical analyses were correlated with results obtained for the
functional and structural diversity of microbial communities. All results were investigated
through statistical and multivariate analysis and the most prominent soil physical and
chemical parameters that influence the biological and biochemical properties of the soil
were identified. Results obtained from this study indicated that there were no significant
difference (p < 0.05) between the treatments, with bioremediation agent, irradiated agent
and without the agent based on results obtained from soil microbial properties and plant
physiology. Before the trial started the uncontaminated soil showed an active microbial
function, characterised by dehydrogenase, urease and arylsulphatase activity, but
community structure was not very diverse. The contaminated soil, irradiated contaminated
soil and silica sand showed less enzymatic function and was characterised by
phospholipid fatty acid groups, mid-branched saturated fatty acids, terminally branched
saturated fatty acids, normal saturated fatty acids and monosaturated fatty acids which are
indicative of microorganisms that survive better in harsh environments. Three weeks after
the addition of the specific bioremediation took place, the uncontaminated soil showed an
increase in P-glucosidase activity and percentage organic carbon (%C), which could be a
result of the presence of available plant material. Furthermore, an increase in major PLFA
groups were seen, suggesting that an increase in diversity within the soil community
occurred. The contaminated soil, irradiated contaminated soil and silica sand once again
was characterised by a low microbial function and diversity, showing no improvement.
Fluorescence data clearly show a decline in PS 11 function that result in the decline of the
rate of photosynthesis, which was seen from COz gas exchange rates. Furthermore, the
decrease in photosynthetic activity after three weeks was too severe to supply additional
information about the mechanism within photosynthesis or the photoprotective
mechanisms. A detailed study was conducted in which a 3: 1 dilution of contaminated soil
with silica sand, was also monitored for changes within plant physiology. Results revealed
that inhibition of PS I1 function already takes place within a few days time and the decline
in photosynthesis is as a result of electron transport that does not supply adenosine
triphosphate (ATP) and P-nicotinamide adenine dinucleotide (NADPH) to the Calvin
cycle (or Reductive Pentose Phosphate pathway). It does not appear that rubulose-1,sbisphosphate
carboxylase-oxygenase (Rubisco) is affected within the Calvin cycle. As a
result of PS I1 function failure, reaction centres are damaged by the production of harmful
singlet oxygen and photoprotective mechanisms (xanthophyll cycle) can not be activated.
Thus, except for dealing with ineffective electron transport, additional damage is caused
to physiological functions. After six weeks a decrease in the estimated viable biomass for
all growth mediums was found. Results of the of trans- to cis- monoenoic fatty acids and
cyclopropyl fatty acids to their monoenoic precursors ratios indicated that the soil
microbial community for the contaminated growth mediums, all experienced nutritional
stress throughout this trail. The specific bioremediation agent (B350) used, seemed to
have no effect on the microbial function and community structure within soil and as agent
had no effect on the residual herbicides or the plant physiology which experienced an
extreme decline in major metabolic functions. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2
|
50 |
Soil microbial community function and structure as assessment criteria for the rehabilitation of coal discard sites in South Africa / Sarina ClaassensClaassens, Sarina January 2003 (has links)
Mining activities cause severe disturbance to the soil environment in terms of soil quality
and productivity and are of serious concern worldwide. Under South African legislation,
developers are required to ecologically rehabilitate damaged environments. The application
of agronomic approaches for the rehabilitation of coal discard sites has failed dismally in
the arid areas of southern Africa. It is obvious that compliance with mitigation and
rehabilitation requirements cannot be enforced without a thorough understanding of the
ecological principles that ensure ecological stability and subsequent sustainability of soil
ecosystems. Soil micro organisms are crucial role-players in the processes that make energy
and nutrients available for recycling in the soil ecosystem. Poor management practices and
other negative impacts on soil ecosystems affect both the physical and chemical properties
of soil, as well as the functional and structural properties of soil microbial communities.
Disturbances of soil ecosystems that impact on the normal functioning of microbial
communities are potentially detrimental to soil formation, energy transfers, nutrient
cycling, plant reestablishment and long-term stability. In this regard, an extensive overview
of soil properties and processes indicated that the use of microbiological and biochemical
soil properties, such as microbial biomass, enzymatic activity and the analysis of microbial
community structure by the quantification of specific signature lipid biomarkers are useful
as indicators of soil ecological stress or restoration properties because they are more
responsive to small changes than physical and chemical characteristics. In this study, the
relationship between the physical and chemical characteristics and different biological
indicators of soil quality in the topsoil covers of seven coal discard sites under
rehabilitation in South Africa, as well as three reference sites was investigated. Through the
assimilation of basic quantitative data and the assessment of certain physical, chemical and
biological properties of the topsoil covers obtained from the various coal discard sites as
well as the reference sites, the relative success or progress of rehabilitation and the possible
correlation between the biological indicators of soil quality and the establishment of self sustaining
vegetation covers was determined. Results from soil physical and chemical
analyses and percentage vegetation cover were correlated with the results obtained for the
functional and structural diversity of microbial communities at the various sites. All results
were investigated through statistical and multivariate analysis and the most prominent
physical and chemical parameters that influence the biological and biochemical properties
of the soil and possibly the establishment of self-sustainable vegetation cover on these
mine-tailing sites were identified. Results obtained from this study indicated no significant
difference (p>0.05) between the various discard sites based on conventional
microbiological enumeration techniques. However, significant differences (p<0.05) could
be observed between the three reference sites. All enzymatic activities assayed for the
rehabilitation sites, with the exception of urease and alkaline phosphatase displayed a
strong, positive association with the organic carbon content (%C). Ammonium
concentration had a weak association with all the enzymes studied and pH only showed a
negative association with acid phosphatase activity. A positive association was observed
between the viable microbial biomass, vegetation cover and the organic carbon content,
ammonium, nitrate and phosphorus concentrations of the soil. The various rehabilitation
and reference sites could be differentiated based on the microbial community structure as
determined by phospholipid fatty acid (PLFA) analysis. It is hypothesised that the
microbial community structure of the Hendrina site is not sustainable when classified along
an r-K gradient and that the high percentage of vegetation cover and high levels of
estimated viable microbial biomass are an artificial reflection of the current management
practices being employed at this site. Results obtained during this study, suggest that an
absence or low percentage of vegetation cover and associated lower organic matter content
of the soil have a significant negative impact on soil biochemical properties (enzymatic
activity) as well as microbial population size. Furthermore, prevailing environmental
physico-chemical and management characteristics significantly influences the vegetation
cover and subsequently the microbial community structure. The results indicate that the
microbial ecosystems in the coal discard sites could become more stable and ecologically
self-regulating, provided effective management to enhance the organic carbon content of
the soil. This could enhance nutrient cycling, resulting in changes of soil structure and
eventually an improved soil quality which could facilitate the establishment of self sustaining
vegetation cover. Results obtained during this study suggest that a polyphasic
assessment of physical and chemical properties; microbial activities by enzymatic analysis;
the characterisation of microbial community structure by analysis of phospholipid fatty
acids; and the multifactorial analysis of the data obtained can be used as complementary
assessment criteria for the evaluation of the trend of rehabilitation of mine tailings and
discard sites. Strategic management criteria are recommended based on the soil
quality environmental sustainability indices to facilitate the establishment of self sustainable
vegetation covers. The contribution of this research to soil ecology is
significant with regards to the intensive investigation and explanation of characteristics and
processes that drive ecological rehabilitation and determine the quality of the soil
environment. The multidisciplinary approach that is proposed could, furthermore, assist in
the successful rehabilitation and establishment of self-sustaining vegetation covers at
industrially disturbed areas, as well as assist in improving degraded soil quality associated
with both intensive and informal agriculture. Additionally, this approach could negate the
negative social and environmental impacts frequently associated with these activities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2004.
|
Page generated in 0.0816 seconds