• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 18
  • 13
  • 9
  • 8
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 156
  • 156
  • 105
  • 44
  • 43
  • 33
  • 27
  • 26
  • 22
  • 22
  • 21
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictive Model for a PV/Thermal Impinging Jet Solar Collector

Brideau, Sebastien Athanase January 2010 (has links)
This thesis is a study of impinging jet PV/Thermal collectors. More specifically, the thesis deals with the development of a model for this type of collector and its validation. The model developed for this thesis consists of a series of energy balances at every layer of the collector. The transient effects due to thermal mass of the different layers were taken into account. The resulting differential equations were solved using the backwards Euler method in an iterative manner. The validation of the model was done using a prototype of the collector. The aperture area of the collector was 0.78m2 and the PV cells covered 0.27m2. The collector was tested on 8 different days between January 30th and March 31st 2010. The experiments were conducted with various weather conditions, and parameters (such as mass flow rate and inlet temperature). The data was taken every 0.5 seconds and averaged over 5 minutes. In general, the model was found to work very well. For March 31st, the total modeled heat gain for the day was found to be within 2.1% of the experimental data. The PV electrical energy was found to be within 4.4% of the experimental results. The model was also found to work well with longer time steps than 5 minutes. Furthermore, the model seemed to work relatively well without accounting for the transient effects due to thermal mass.
2

A consideration of cycle selection for meso-scale distributed solar-thermal power

Price, Suzanne. January 2009 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Mayor, James Rhett; Committee Member: Garimella, Srinivas; Committee Member: Jeter, Sheldon. Part of the SMARTech Electronic Thesis and Dissertation Collection.
3

Predictive Model for a PV/Thermal Impinging Jet Solar Collector

Brideau, Sebastien Athanase January 2010 (has links)
This thesis is a study of impinging jet PV/Thermal collectors. More specifically, the thesis deals with the development of a model for this type of collector and its validation. The model developed for this thesis consists of a series of energy balances at every layer of the collector. The transient effects due to thermal mass of the different layers were taken into account. The resulting differential equations were solved using the backwards Euler method in an iterative manner. The validation of the model was done using a prototype of the collector. The aperture area of the collector was 0.78m2 and the PV cells covered 0.27m2. The collector was tested on 8 different days between January 30th and March 31st 2010. The experiments were conducted with various weather conditions, and parameters (such as mass flow rate and inlet temperature). The data was taken every 0.5 seconds and averaged over 5 minutes. In general, the model was found to work very well. For March 31st, the total modeled heat gain for the day was found to be within 2.1% of the experimental data. The PV electrical energy was found to be within 4.4% of the experimental results. The model was also found to work well with longer time steps than 5 minutes. Furthermore, the model seemed to work relatively well without accounting for the transient effects due to thermal mass.
4

An evaluation of the performance of a solar boiler equipped with a parabolic cylinder type mirror

Bowman, John Patrick, 1935- January 1959 (has links)
No description available.
5

Improved multiple loop simulation method applied to a proposed dish ericsson solar thermal power system

Elgendy, Youssef Ahmed Mohammad 05 1900 (has links)
No description available.
6

Theoretical modeling and designing a line-focused horizontal -receiver- solar thermal power plant/

Yazıcı, Osman Can. Subaşılar, Bedrettin January 2005 (has links) (PDF)
Thesis (Master)--İzmir Institute of Technology, İzmir, 2005 / Keywords: Solar energy plant, solar collectors, fresnel lens, spherical geometry, solar tracking system. Includes bibliographical references (leaves 113-114).
7

Experimental Evaluation and Modeling of a Solar Liquid Desiccant Air Conditioner

Crofoot, LISA 29 October 2012 (has links)
Air-conditioning systems driven by solar energy have can save primary energy and reduce peak power consumption, which is particularly important for utility providers in the summer months. Additionally solar cooling is a promising application of solar thermal technology since the cooling load is well correlated to the overall solar availability. Liquid desiccant air-conditioning, which uses a salt solution to dehumidify air, can be used in a thermally driven air-conditioning system and offers many benefits for solar applications including the ability to store solar energy in the form of concentrated liquid desiccant. The current work focuses on the Queen’s University Solar Liquid Desiccant Cooling Demonstration Project. In previous work, a pre-commercial Liquid Desiccant Air Conditioner (LDAC) was installed and experimentally characterized using a gas-fired boiler to provide heat. As part of the current study a 95m2 solar array was added as a heat source. The Solar LDAC was tested for 20 days in the summer of 2012 to evaluate performance. The solar LDAC was found to provide between 9.2kW and 17.2kW of cooling power with an overall thermal Coefficient of Performance (COP) of 0.40 and electrical COP of 2.43. The collector efficiency was 53%, and 40% of the required thermal energy was provided by the solar array. A model was developed in TRNSYS to predict the performance of the solar LDAC and simulation results were compared to the experimental results with reasonable accuracy. The validated model was then used to simulate the annual performance of the solar LDAC in Toronto, Ontario; Vancouver, British Columbia; and Miami, Florida. The highest performance was achieved in Miami, where an overall thermal COP of 0.48 was predicted. It is proposed that additional improvements be made to the system by replacing inefficient pumps and fans, adding desiccant storage, and improving the control scheme. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-10-29 16:34:02.906
8

THE DEVELOPMENT AND APPLICATION OF A SIMPLIFIED THERMAL PERFORMANCE EQUATION FOR A SHEET-AND-TUBE PHOTOVOLTAIC THERMAL COMBI-PANEL

Carriere, JARRETT 22 January 2013 (has links)
PV/Thermal technology is the combination of solar thermal and photovoltaics - two mature and widely understood technologies. Combining the two technologies complicates existing standardized rating procedures and performance modeling methods. Currently a standardized performance test method does not exist for PV/Thermal (PV/T) panels. Existing and developing PV/T panels are commonly tested using separate standardized solar thermal and photovoltaic test procedures. Solar thermal performance is rated in terms of temperature difference whereas photovoltaic performance is dependent on absolute temperature level. The thermal and electrical performance of a PV/T panel is, however, coupled so performance equations derived using traditional test methods may not accurately reflect the performance of a combined PV/T panel over a wide range of conditions. The purpose of this work was to develop an efficiency equation for a PV/T panel which can be derived from a minimal amount of empirical test data and still accurately predict its thermal and electrical performance over a wide range of conditions. To accomplish this, a quasi- 3-dimensional steady-state model of a sheet-and-tube PV/T collector was developed and used to generate a broad data set from which a simplified PV/T performance equation was developed. Using this numerically generated data set, and introducing additional coefficients into the traditional solar thermal performance characteristic, a modified PV/T efficiency equation was derived which expressed the electrical and thermal efficiency in terms of ambient temperature, incident solar irradiation and the temperature difference between the inlet fluid and the ambient. It was also shown, for the case studied, that the efficiency equation can be produced from as few as 6 data points and still accurately predicts the performance at a wide range of operating conditions. A TRNSYS [1] model was developed to demonstrate how the performance equation can be used to simulate the annual performance of a PV/T collector in a domestic hot water system. It was shown that a performance equation, derived from 6 data points, performed as well as a performance map which used over 1000 data points. The annual thermal and electrical production predicted by both models was within 1.5% of each other. The PV/T efficiency equations were also shown to perform well for a range of electrical parameters, thermal properties and substrate thermal conductivity values. Future work is recommended to validate the PV/T performance equation using real empirically derived data for a range of collector designs. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-01-22 15:40:03.337
9

Field Evaluation and Anaysis of a Liquid Desiccant Air Handling System

Jones, Benjamin Marcus 28 September 2008 (has links)
A thermal liquid desiccant air handling machine was procured, installed, and field tested. The goal of the present investigation is to evaluate the field performance of the machine and characterize its operation for the temperature range of a solar thermal array. The system studied includes a natural gas boiler supplying the heat, and a cooling tower for heat rejection. System performance was evaluated for the 50 to 90 C temperature range, the operating range of solar thermal collectors. Cooling power varied between 4.3 kW and 22.8 kW for this range of temperature, with a latent heat ratio between 1.1 and 1.9, confirming that the unit is significantly dehumidifying the process air stream. Electrical COP varied between 0.58 and 4.48. Performance data indicates higher temperature solar collectors such as evacuated tube or double glazed flat plat collectors would be optimum in a solar cooling application with this system. Empirical correlations for the regenerator and conditioner components were obtained using a multivariate linear regression model. 5 empirical relations were derived and can be used to characterize the thermal dehumidification concept. These relations and methods will be used in future work to simulate and optimize a solar thermal driven dehumidification system for dedicated outdoor air systems. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2008-09-28 04:36:36.26
10

Fabrication of high efficacy selective solar absobers.

Tile, Ngcali. January 2012 (has links)
High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel oxide precursor sols which were homogeneously mixed to form a final C-NiO precursor sol. The carbon precursor sol was prepared by dissolving sucrose (SUC) in 8 ml of distilled water. The NiO precursor sol was prepared by dissolving 7.5 g nickel acetate in 50 ml ethanol, then adding 6.3 g diethanol amine (DEA) to stabilise the solution followed by addition of a structure directing template of polyethylene glycol (PEG). The final C-NiO precursor sol was spin coated on pre-cleaned aluminium substrate to form thin films which were then heat treated in nitrogen ambient inside a tube furnace. The final heat treatment temperature of the sols was determined by thermal studies using thermo gravimetric analytic (TGA) and differential scanning calorimetric (DSC) techniques. TGA and DSC studies of the final precursor sol showed that the weight loss of the precursors stabilised at around 450 °C. The impact of the sol-gel process parameters namely heat treatment temperature, PEG content, SUC content as well as spin coating speed on the optical properties i.e. solar absorptance (αsol) and thermal emittance (εtherm) was investigated. It was found that the optical properties as well as photo-thermal conversion efficiency, η = αsol - εtherm, improved with an increase in heat treatment temperature in the range studied (300-550 °C). This is in good agreement with the results obtained from thermo-gravimetric analysis which showed the weight loss of the precursor to stabilise around a temperature of 450 °C. Results obtained from the Raman studies showed a progressive increase in the graphitic domain in C-NiO samples with an increase in temperature. Heat treatment temperatures above 450 °C gave the best optical properties. Scanning electron microscopy (SEM) results showed that samples that did not have PEG in the precursor sol were compact and an addition of PEG in the precursor sol caused an increase in the size and density of pores in the films produced which affected the optical properties. As a result, the optical properties increased with an increase in PEG content from 0 g to 2 g then decreased with further increase in PEG content. It was found that addition of SUC of up to 8 g in the sol did not change the optical properties of the fabricated materials because SUC contributed little carbon to the final composite material. Further increase in SUC content resulted in materials with poor photo-thermal conversion efficiency. An increase in spin coating speed did not change the absorptance of the materials but it improved their thermal emittance. The best spin coating speed was found to be 7000 RPM. A solar absorptance of 0.81 and thermal emittance of 0.06 have been achieved for an optimum sample in this study yielding a photo-thermal conversion efficiency of 0.75. The optimum sample fabricated in this study showed superior optical properties compared to the widely used commercial solar absorber paint. This suggests that the C-NiO composite material has the potential for possible use as a selective solar absorber in a solar collector. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2012.

Page generated in 0.0621 seconds