• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um modelo genérico para fluxos em estruturas auto-similares e a sua relação com espectros afins: da geometria da árvore brônquica às características dos sons pulmonares. / A generic model for flows in self-similar strutuctures and its relation with affine spectra: from the bronchial tree geometry to the spectral characteristics of the lung sounds

Faistauer, Daniel 20 February 2004 (has links)
Made available in DSpace on 2015-03-05T13:53:44Z (GMT). No. of bitstreams: 0 Previous issue date: 20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho um esquema teórico é proposto para a produção de sons pulmonares normais de altas freqüências. Este esquema é baseado na discretização em multi-escala do fluxo de ar em elementos discretos independentes que interagem de maneira sintonizada com a estrutura geométrica que representa a árvore brônquica. Os resultados mostram que o espectro de amplitudes obtido, em escala log-log, é afim (retilínio) com inclinação dependente da dimensão fractal da árvore brônquica. As previsões teóricas com base neste esquema se mostraram compatíveis, qualitativamente e quantitativamente, com as características espectrais relatadas na literatura. Posteriormente é realizada a implementação do esquema teórico através de sua adaptação a um modelo computacional simulável. Além disto, o modelo computacional estende o esquema teórico permitindo que sejam introduzidas interações entre os elementos discretos constituintes do fluxo via potenciais. Estas interações fazem com que os espectros se ajustem tanto à região das / In this work, a theoretical scheme is considered for normal lung sound pro- duction in high frequencies. This scheme is based on multi-scaled _ux discretiza- tion into independent discrete elements, which interact with the geometric struc- ture that represents the bronchial tree in a syntonized fashion. The resulting amplitude spectrum is a_ne in a log-log scale with slope dependence on the frac- tal dimension of the bronchial tree. The results from a theoretical analysis of this scheme is compatible, qualitatively and quantitatively with the spectral characte- ristics reported in the literature. Furthermore, a computational and simulational model is realized starting from the theoretical scheme. Moreover, the computational model extends the the- oretical scheme introducing interactions among the discrete elements by potentials. These interactions yield a more precise adjustment of the spectra in low frequency as well as in the high frequency spectral region. Finally, a sound synthesis method is
2

Análise não-linear no reconhecimento de padrões sonoros : estudo de caso para sons pulmonares / Nonlinear analysis in sound pattern recognition: case study of lung sounds

Custodio, Ricardo Felipe January 1999 (has links)
Nas últimas décadas uma considerável parcela das pesquisas nas áreas de Física e Matemática tem sido dedicada ao estudo de fenômenos não lineares. Uma possível explicação para isso foi o rápido desenvolvimento de sistemas computacionais, tanto em nível de hardware quanta em nível de software, algoritmos e técnicas de programação que propiciaram ao homem maiores facilidades no tratamento de sistemas não lineares, o que levou a um maior grau de entendimento de sua complexidade. Geralmente, aos sistemas não lineares esta associada uma geometria irregular, onde comum o aparecimento de regimes caóticos, com um conjunto atrator de órbitas cuja dimensão não é um inteiro positivo, mas sim um número real positivo. Por esta razão, tais atratores, são denominados estranhos e ditos possuírem uma geometria fractal. É possível, através de métodos cuidadosamente desenvolvidos, estimar-se as dimensões associadas à dinâmica de séries temporais. Uma das séries de maior dificuldade de análise através do computador, e de particular interesse na medicina, são as séries de sons pulmonares humanos. Desde quando o estetoscópio foi inventado até os dias de hoje não há uma ferramenta plenamente confiável para a análise destas séries. Recentemente, temos trabalhado com estas séries e verificamos que há uma geometria fractal. Esta tese propõe a utilização da análise não-linear para identificação de padrões sonoros. Além da geometria fractal, a análise por wavelets tem sido utilizada no estudo de sinais complexos, sobretudo naqueles que apresentam estruturas fractais. O conjunto de filtros construído através da translação, expansão ou compressão de uma função wavelet mãe tem uma estrutura auto-similar, mostrando-se particularmente apropriado para a verificação da auto similaridade dos sons. A técnica da estimativa dos expoentes de Lyapunov dependente do tempo, a qual e desenvolvida na tese, tem se mostrado bastante adequada para identificação de padrões sonoros de origem pulmonar. / It has been observed that in the last decades, considerable amount of the research in the areas of Physics and Mathematics have been dedicated to the study of nonlinear phenomena. A possible explanation for this fact is the fast development of computational systems occurring in the level of the hardware as in computer languages, algorithms and programming techniques. These developments propitiated to the researchers a broader contact with nonlinear systems, which led to a better understanding of their complexity. In general, for nonlinear systems an irregular geometry is associated, where the appearance of chaotic regimes has an associated attractor set of orbits whose dimension is not a positive integer number, but a real one. Such attractors are called strange and said to possess fractal geometry. It is possible, through carefully developed methods, to estimate the dimension associated to the dynamics of time series. One of the series with high difficulty to be analyzed through a computer and of particular interest in medicine, is the time series generated out of human pulmonary sounds. Since the creation of the stethoscope, there is not yet a fully trustworthy tool for the lung sound analysis. Recently, we have studied these series and verified that they have a fractal geometry nature. The purpose of this thesis is to investigate non-linear analysis as a tool for pattern recognition in lung sounds. In addition to fractal geometry, the wavelet analysis has been used in the study of complex signs, in particular for those presenting a fractal structure. The set of filters constructed through the translation, expansion or compression of a function wavelet mother has an auto-similar structure, being particularly useful for the verification of self similarity of pulmonary sounds. The largest time dependent Lyapunov exponent estimation technique that has been proposed in this thesis has shown a high degree of confidence for the identification of lung sound patterns.
3

Análise não-linear no reconhecimento de padrões sonoros : estudo de caso para sons pulmonares / Nonlinear analysis in sound pattern recognition: case study of lung sounds

Custodio, Ricardo Felipe January 1999 (has links)
Nas últimas décadas uma considerável parcela das pesquisas nas áreas de Física e Matemática tem sido dedicada ao estudo de fenômenos não lineares. Uma possível explicação para isso foi o rápido desenvolvimento de sistemas computacionais, tanto em nível de hardware quanta em nível de software, algoritmos e técnicas de programação que propiciaram ao homem maiores facilidades no tratamento de sistemas não lineares, o que levou a um maior grau de entendimento de sua complexidade. Geralmente, aos sistemas não lineares esta associada uma geometria irregular, onde comum o aparecimento de regimes caóticos, com um conjunto atrator de órbitas cuja dimensão não é um inteiro positivo, mas sim um número real positivo. Por esta razão, tais atratores, são denominados estranhos e ditos possuírem uma geometria fractal. É possível, através de métodos cuidadosamente desenvolvidos, estimar-se as dimensões associadas à dinâmica de séries temporais. Uma das séries de maior dificuldade de análise através do computador, e de particular interesse na medicina, são as séries de sons pulmonares humanos. Desde quando o estetoscópio foi inventado até os dias de hoje não há uma ferramenta plenamente confiável para a análise destas séries. Recentemente, temos trabalhado com estas séries e verificamos que há uma geometria fractal. Esta tese propõe a utilização da análise não-linear para identificação de padrões sonoros. Além da geometria fractal, a análise por wavelets tem sido utilizada no estudo de sinais complexos, sobretudo naqueles que apresentam estruturas fractais. O conjunto de filtros construído através da translação, expansão ou compressão de uma função wavelet mãe tem uma estrutura auto-similar, mostrando-se particularmente apropriado para a verificação da auto similaridade dos sons. A técnica da estimativa dos expoentes de Lyapunov dependente do tempo, a qual e desenvolvida na tese, tem se mostrado bastante adequada para identificação de padrões sonoros de origem pulmonar. / It has been observed that in the last decades, considerable amount of the research in the areas of Physics and Mathematics have been dedicated to the study of nonlinear phenomena. A possible explanation for this fact is the fast development of computational systems occurring in the level of the hardware as in computer languages, algorithms and programming techniques. These developments propitiated to the researchers a broader contact with nonlinear systems, which led to a better understanding of their complexity. In general, for nonlinear systems an irregular geometry is associated, where the appearance of chaotic regimes has an associated attractor set of orbits whose dimension is not a positive integer number, but a real one. Such attractors are called strange and said to possess fractal geometry. It is possible, through carefully developed methods, to estimate the dimension associated to the dynamics of time series. One of the series with high difficulty to be analyzed through a computer and of particular interest in medicine, is the time series generated out of human pulmonary sounds. Since the creation of the stethoscope, there is not yet a fully trustworthy tool for the lung sound analysis. Recently, we have studied these series and verified that they have a fractal geometry nature. The purpose of this thesis is to investigate non-linear analysis as a tool for pattern recognition in lung sounds. In addition to fractal geometry, the wavelet analysis has been used in the study of complex signs, in particular for those presenting a fractal structure. The set of filters constructed through the translation, expansion or compression of a function wavelet mother has an auto-similar structure, being particularly useful for the verification of self similarity of pulmonary sounds. The largest time dependent Lyapunov exponent estimation technique that has been proposed in this thesis has shown a high degree of confidence for the identification of lung sound patterns.
4

Análise não-linear no reconhecimento de padrões sonoros : estudo de caso para sons pulmonares / Nonlinear analysis in sound pattern recognition: case study of lung sounds

Custodio, Ricardo Felipe January 1999 (has links)
Nas últimas décadas uma considerável parcela das pesquisas nas áreas de Física e Matemática tem sido dedicada ao estudo de fenômenos não lineares. Uma possível explicação para isso foi o rápido desenvolvimento de sistemas computacionais, tanto em nível de hardware quanta em nível de software, algoritmos e técnicas de programação que propiciaram ao homem maiores facilidades no tratamento de sistemas não lineares, o que levou a um maior grau de entendimento de sua complexidade. Geralmente, aos sistemas não lineares esta associada uma geometria irregular, onde comum o aparecimento de regimes caóticos, com um conjunto atrator de órbitas cuja dimensão não é um inteiro positivo, mas sim um número real positivo. Por esta razão, tais atratores, são denominados estranhos e ditos possuírem uma geometria fractal. É possível, através de métodos cuidadosamente desenvolvidos, estimar-se as dimensões associadas à dinâmica de séries temporais. Uma das séries de maior dificuldade de análise através do computador, e de particular interesse na medicina, são as séries de sons pulmonares humanos. Desde quando o estetoscópio foi inventado até os dias de hoje não há uma ferramenta plenamente confiável para a análise destas séries. Recentemente, temos trabalhado com estas séries e verificamos que há uma geometria fractal. Esta tese propõe a utilização da análise não-linear para identificação de padrões sonoros. Além da geometria fractal, a análise por wavelets tem sido utilizada no estudo de sinais complexos, sobretudo naqueles que apresentam estruturas fractais. O conjunto de filtros construído através da translação, expansão ou compressão de uma função wavelet mãe tem uma estrutura auto-similar, mostrando-se particularmente apropriado para a verificação da auto similaridade dos sons. A técnica da estimativa dos expoentes de Lyapunov dependente do tempo, a qual e desenvolvida na tese, tem se mostrado bastante adequada para identificação de padrões sonoros de origem pulmonar. / It has been observed that in the last decades, considerable amount of the research in the areas of Physics and Mathematics have been dedicated to the study of nonlinear phenomena. A possible explanation for this fact is the fast development of computational systems occurring in the level of the hardware as in computer languages, algorithms and programming techniques. These developments propitiated to the researchers a broader contact with nonlinear systems, which led to a better understanding of their complexity. In general, for nonlinear systems an irregular geometry is associated, where the appearance of chaotic regimes has an associated attractor set of orbits whose dimension is not a positive integer number, but a real one. Such attractors are called strange and said to possess fractal geometry. It is possible, through carefully developed methods, to estimate the dimension associated to the dynamics of time series. One of the series with high difficulty to be analyzed through a computer and of particular interest in medicine, is the time series generated out of human pulmonary sounds. Since the creation of the stethoscope, there is not yet a fully trustworthy tool for the lung sound analysis. Recently, we have studied these series and verified that they have a fractal geometry nature. The purpose of this thesis is to investigate non-linear analysis as a tool for pattern recognition in lung sounds. In addition to fractal geometry, the wavelet analysis has been used in the study of complex signs, in particular for those presenting a fractal structure. The set of filters constructed through the translation, expansion or compression of a function wavelet mother has an auto-similar structure, being particularly useful for the verification of self similarity of pulmonary sounds. The largest time dependent Lyapunov exponent estimation technique that has been proposed in this thesis has shown a high degree of confidence for the identification of lung sound patterns.

Page generated in 0.0772 seconds