• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 10
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 102
  • 102
  • 25
  • 24
  • 20
  • 17
  • 17
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Improvement of Sound Source Localization for a Binaural Robot of Spherical Head with Pinnae / 耳介付球状頭部を持つ両耳聴ロボットのための音源定位の高性能化

Kim, Ui-Hyun 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第17928号 / 情博第510号 / 新制||情||90(附属図書館) / 30748 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 奥乃 博, 教授 河原 達也, 教授 山本 章博 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
42

Echo Delay Estimation to Aid Source Localization in Noisy Environments

Bettadapura, Raghuprasad Shivatejas 17 September 2014 (has links)
Time-delay estimation (TDE) finds application in a variety of problems, be it locating fractures or steering cameras towards the speaker in a multi-participant conference application. Underwater acoustic OFDM source localization is another important application of TDE. Existing underwater acoustic source localization techniques use a microphone array consisting of three or four sensors in order to effectively locate the source. Analog-to-digital (ADC) converters at these sensors call for a non-nominal investment in terms of circuitry and memory. A relatively inexpensive source localization algorithm is needed that works with the output of a single sensor. Since an inexpensive process for estimating the location of the source is desired, the ADC used at the sensor is capable only of a relatively low sampling rate. For a given delay, a low sampling rate leads to sub-sample interval delays, which the desired algorithm must be able to estimate. Prevailing TDE algorithms make some a priori assumptions about the nature of the received signal, such as Gaussianity, wide-sense stationarity, or periodicity. The desired algorithm must not be restrictive in so far as the nature of the transmitted signal is concerned. A time-delay estimation algorithm based on the time-frequency ratio of mixtures (TFRM) method is proposed. The experimental set-up consists of two microphones/sensors placed at some distances from the source. The method accepts as input the received signal which consists of the sum of the signal received at the nearer sensor and the signal received at the farther sensor and noise. The TFRM algorithm works in the time-frequency domain and seeks to perform successive source cancellation in the received burst. The key to performing source cancellation is to estimate the ratio in which the sources combine and this ratio is estimated by means of taking a windowed mean of the ratio of the spectrograms of any two pulses in the received burst. The variance of the mean function helps identify single-source regions and regions in which the sources mix. The performance of the TFRM algorithm is evaluated in the presence of noise and is compared against the Cramer-Rao lower bound. It is found that the variance of the estimates returned by the estimator diverge from the predictions of the Cramer-Rao inequality as the farther sensor is moved farther away. Conversely, the estimator becomes more reliable as the farther sensor is moved closer. The time-delay estimates obtained from the TFRM algorithm are used for source localization. The problem of finding the source reduces to finding the locus of points such that the difference of its distances to the two sensors equals the time delay. By moving the pair of sensors to a different location, or having a second time delay sensor, an exact location for the source can be determined by finding the point of intersection of the two loci. The TFRM method does not rely on a priori information about the signal. It is applicable to OFDM sources as well as sinusoidal and chirp sources. / Master of Science
43

EFFICIENT TIME OF ARRIVAL CALCULATION FOR ACOUSTIC SOURCE LOCALIZATION USING WIRELESS SENSOR NETWORKS

Reddy, Prashanth G. January 2011 (has links)
No description available.
44

Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

Wilkins, Nathan Allen 15 June 2015 (has links)
No description available.
45

Sparse Signal Reconstruction Modeling for MEG Source Localization Using Non-convex Regularizers

Samarasinghe, Kasun M. 19 October 2015 (has links)
No description available.
46

Sound Source Localization and Beamforming for Teleconferencing Solutions

Kjellson, Angelica January 2014 (has links)
In teleconferencing the audio quality is key to conducting successful meetings. The conference room setting imposes various challenges on the speech signal processing, such as noise and interfering signals, reverberation, or participants positioned far from the telephone unit. This work aims at improving the received speech signal of a conference telephone by implementing sound source localization and beamforming. The implemented microphone array signal processing techniques are compared to the performance of an existing multi-microphone solution and evaluated under various conditions using a planar uniform circular array. Recordings of test-sequences for the evaluation were performed using a custom-built array mockup. The implemented algorithms did not show good enough performance to motivate the increased computational complexity compared to the existing solution. Moreover, an increase in number of microphones used was concluded to have little or no effect on the performance of the methods. The type of microphone used was, however, concluded to have impact on the performance and a subjective listening evaluation indicated a preference for omnidirectional microphones which is recommended to investigate further. / God ljudkvalitet är en grundsten för lyckade telefonmöten. Miljön i ett konferens-rum medför ett flertal olika utmaningar för behandlingen av mikrofonsignalerna: det kan t.ex. vara brus och störningar, eller att den som talar befinner sig långt från telefonen. Målet med detta arbete är att förbättra den talsignal som tas upp av en konferenstelefon genom att implementera lösningar för lokalisering av talaren och riktad ljudupptagning med hjälp av ett flertal mikrofoner. De implementerade metoderna jämförs med en befintlig lösning och utvärderas under olika brusscenarion för en likformig cirkulär mikrofonkonstellation. För utvärderingen användes testsignaler som spelades in med en specialbyggd enhet. De implementerade algoritmerna kunde inte uppvisa en tillräcklig förbättring i jämförelse med den befintliga lösningen för att motivera den ökade beräkningskomplexitet de skulle medföra. Dessutom konstaterades att en fördubbling av antalet mikrofoner gav liten eller ingen förbättring på metoderna. Vilken typ av mikrofon som användes konstaterades däremot påverka resultatet och en subjektiv utvärdering indikerade en preferens för de rundupptagande mikrofonerna, en skillnad som föreslås undersökas vidare.
47

Source localization from received signal strength under lognormal shadowing

Chitte, Sree Divya 01 May 2010 (has links)
This thesis considers statistical issues in source localization from the received signal strength (RSS) measurements at sensor locations, under the practical assumption of log-normal shadowing. Distance information of source from sensor locations can be estimated from RSS measurements and many algorithms directly use powers of distances to localize the source, even though distance measurements are not directly available. The first part of the thesis considers the statistical analysis of distance estimation from RSS measurments. We show that the underlying problem is inefficient and there is only one unbiased estimator for this problem and its mean square error (MSE) grows exponentially with noise power. Later, we provide the linear minimum mean square error (MMSE) estimator whose bias and MSE are bounded in noise power. The second part of the thesis establishes an isomorphism between estimates of differences between squares of distances and the source location. This is used to completely characterize the class of unbiased estimates of the source location and to show that their MSEs grow exponentially with noise powers. Later, we propose an estimate based on the linear MMSE estimate of distances that has error variance and bias that is bounded in the noise variance.
48

Localization of cortical potentials evoked by balance disturbances

Marlin, Amanda January 2011 (has links)
The ability to correct balance disturbances is essential for maintaining upright stability. Recent literature highlights a potentially important role for the cerebral cortex in controlling compensatory balance reactions. The objective of this research was to provide a more detailed understanding of the specific neurophysiologic events occurring at the cortex following balance disturbances. More specifically, the focus was to determine whether the N1, a cortical potential evoked during balance control, and the error-related negativity (ERN), a cortical potential measured in response to errors during cognitive tasks, have similar cortical representation, revealing a similar link to an error detection mechanism. It was hypothesized that the N1 and ERN would have the same generator located in the anterior cingulate cortex (ACC). Fourteen healthy young adults participated in a balance task (evoked N1) and a flanker task (evoked ERN). Temporally unpredictable perturbations to standing balance were achieved using a lean and release cable system. Electromyography and centre of pressure were measured during the balance task. Reaction times and error rates were measured during the flanker task. Electroencephalography was recorded during both tasks. Source localization was performed in CURRY 6 using a single fixed coherent dipole model to determine the neural generator of the N1 and ERN. The results revealed that the locations of the N1 and ERN dipoles were different. The mean (n=9) distance between N1 and ERN dipoles was 25.46 ± 8.88 mm. The mean Talairach coordinates for the ERN dipole were (6.47 ± 3.08, -4.41 ± 13.15, 41.17 ± 11.63) mm, corresponding to the cingulate gyrus (Brodmann area 24). This represents the ACC, supporting results from previous literature. The mean Talairach coordinates for the N1 dipole were (5.74 ± 3.77, -11.81 ± 10.84, 53.73 ± 7.30) mm, corresponding to the medial frontal gyrus (Brodmann area 6). This is the first work to localize the source of the N1. It is speculated that the generator of the N1 is the supplementary motor area and that it represents the generation of a contingency motor plan to shape the later phases of the compensatory balance response based on sensory feedback from the perturbation.
49

Localization of Dynamic Acoustic Sources with a Maneuverable Array

Rogers, Jeffrey S. January 2010 (has links)
<p>This thesis addresses the problem of source localization and time-varying spatial spectrum estimation with maneuverable arrays. Two applications, each having different environmental assumptions and array geometries, are considered: 1) passive broadband source localization with a rigid 2-sensor array in a shallow water, multipath environment and 2) time-varying spatial spectrum estimation with a large, flexible towed array. Although both applications differ, the processing scheme associated with each is designed to exploit array maneuverability for improved localization and detection performance.</p><p>In the first application considered, passive broadband source localization is accomplished via time delay estimation (TDE). Conventional TDE methods, such as the generalized cross-correlation (GCC) method, make the assumption of a direct-path signal model and thus suffer localization performance loss in shallow water, multipath environments. Correlated multipath returns can result in spurious peaks in GCC outputs resulting in large bearing estimate errors. A new algorithm that exploits array maneuverability is presented here. The multiple orientation geometric averaging (MOGA) technique geometrically averages cross-correlation outputs to obtain a multipath-robust TDE. A broadband multipath simulation is presented and results indicate that the MOGA effectively suppresses correlated multipath returns in the TDE.</p><p>The second application addresses the problem of field directionality mapping (FDM) or spatial spectrum estimation in dynamic environments with a maneuverable towed acoustic array. Array processing algorithms for towed arrays are typically designed assuming the array is straight, and are thus degraded during tow ship maneuvers. In this thesis, maneuvering the array is treated as a feature allowing for left and right disambiguation as well as improved resolution towards endfire. The Cramer Rao lower bound is used to motivate the improvement in source localization which can be theoretically achieved by exploiting array maneuverability. Two methods for estimating time-varying field directionality with a maneuvering array are presented: 1) maximum likelihood estimation solved using the expectation maximization (EM) algorithm and 2) a non-negative least squares (NNLS) approach. The NNLS method is designed to compute the field directionality from beamformed power outputs, while the ML algorithm uses raw sensor data. A multi-source simulation is used to illustrate both the proposed algorithms' ability to suppress ambiguous towed-array backlobes and resolve closely spaced interferers near endfire which pose challenges for conventional beamforming approaches especially during array maneuvers. Receiver operating characteristics (ROCs) are presented to evaluate the algorithms' detection performance versus SNR. Results indicate that both FDM algorithms offer the potential to provide superior detection performance in the presence of noise and interfering backlobes when compared to conventional beamforming with a maneuverable array.</p> / Dissertation
50

Localization of cortical potentials evoked by balance disturbances

Marlin, Amanda January 2011 (has links)
The ability to correct balance disturbances is essential for maintaining upright stability. Recent literature highlights a potentially important role for the cerebral cortex in controlling compensatory balance reactions. The objective of this research was to provide a more detailed understanding of the specific neurophysiologic events occurring at the cortex following balance disturbances. More specifically, the focus was to determine whether the N1, a cortical potential evoked during balance control, and the error-related negativity (ERN), a cortical potential measured in response to errors during cognitive tasks, have similar cortical representation, revealing a similar link to an error detection mechanism. It was hypothesized that the N1 and ERN would have the same generator located in the anterior cingulate cortex (ACC). Fourteen healthy young adults participated in a balance task (evoked N1) and a flanker task (evoked ERN). Temporally unpredictable perturbations to standing balance were achieved using a lean and release cable system. Electromyography and centre of pressure were measured during the balance task. Reaction times and error rates were measured during the flanker task. Electroencephalography was recorded during both tasks. Source localization was performed in CURRY 6 using a single fixed coherent dipole model to determine the neural generator of the N1 and ERN. The results revealed that the locations of the N1 and ERN dipoles were different. The mean (n=9) distance between N1 and ERN dipoles was 25.46 ± 8.88 mm. The mean Talairach coordinates for the ERN dipole were (6.47 ± 3.08, -4.41 ± 13.15, 41.17 ± 11.63) mm, corresponding to the cingulate gyrus (Brodmann area 24). This represents the ACC, supporting results from previous literature. The mean Talairach coordinates for the N1 dipole were (5.74 ± 3.77, -11.81 ± 10.84, 53.73 ± 7.30) mm, corresponding to the medial frontal gyrus (Brodmann area 6). This is the first work to localize the source of the N1. It is speculated that the generator of the N1 is the supplementary motor area and that it represents the generation of a contingency motor plan to shape the later phases of the compensatory balance response based on sensory feedback from the perturbation.

Page generated in 0.1871 seconds