Spelling suggestions: "subject:"space time coding"" "subject:"apace time coding""
1 |
Hybrid ARQ Schemes for Non-orthogonal Space-time Block CodesLin, Rui January 2007 (has links)
Automatic Repeat-reQuest (ARQ) schemes are extensively used in communication systems and computer networks to achieve reliable transmission. Using space-time codes (STCs) with multiple input multiple output (MIMO) or multiple input single output (MISO) systems is an effective way to combat multipath fading, which is the most severe impairment for wireless communication systems. STCs are designed to use the rich scattering multipath environment provided by using multiple transmit antennas. The work done in this thesis focuses on the use of ARQ schemes with non-orthogonal space-time block codes (NOSTBCs) based on Reed Solomon codes. The truncated-selective ARQ (TS-ARQ) scheme is considered and three novel hybrid ARQ (HARQ) schemes are proposed. Simulation results reveal that, compared to using TS-ARQ with orthogonal space-time block codes (OSTBCs), using NOSTBCs with any of the three proposed HARQ schemes can provide significant gains in terms of dropped packet rate and spectral efficiency at the cost of increased decoding complexity. The performance can be further improved by using the water filling principle to adaptively allocate transmit power among transmit antennas.
|
2 |
SPACE-TIME CODING FOR WIRELESS COMMUNICATIONSJensen, Michael A., Rice, Michael D. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / Signal fading and intersymbol interference created by multipath propagation have traditionally
limited the throughput on wireless communications systems. However, recent research has
demonstrated that by using multiple antennas on both transmit and receive ends of the link, the
multipath channel can actually be exploited to achieve increased communication throughput over
single-antenna systems. This paper provides an introductory description of such multi-antenna
communications systems, focusing on basic explanations of how they achieve capacity gains.
Computed and measured capacity results are used to demonstrate the potential of these systems.
|
3 |
Space-time Coded Systems with Continuous Phase ModulationMaw, Rachel Leigh January 2007 (has links)
Space-time coded systems developed in the last ten years have been designed primarily using linear modulation. Non-linear continuous phase modulation has desirable constant envelope properties and considerable potential in space-time coded systems. The work in this thesis is focussed on developing and analysing an integrated space-time coded continuous phase modulated (STC-CPM) system. The coding of the space-time encoder and the modulation is incorporated into a single trellis encoder. This allows state combining, which leads to complexity reduction due to the reduced number of states. Design criteria for STC-CPM are summarized and the Euclidean distance is shown to be important for code design. The integrated STC-CPM system design enables systematic spacetime code searches that find optimal space-time codes, to be easily implemented. Optimal rate-1/2 and rate-2/3 space-time codes are found by maximizing the system's minimum squared Euclidean distance. These codes can provide high throughput and good coding gains over un-optimized full rank codes, such as delay diversity, in a quasi-static flat fading environment. Performance bounds are developed using a union bound argument and the pairwise error probability. Approximations of the bounds are evaluated. These truncated upper bounds predict the slopes of the simulated performance curves at low error rates.
|
4 |
Space-Time Coding for Polynomial Phase Modulated SignalsGranados, Omar D 01 April 2011 (has links)
Polynomial phase modulated (PPM) signals have been shown to provide improved error rate performance with respect to conventional modulation formats under additive white Gaussian noise and fading channels in single-input single-output (SISO) communication systems. In this dissertation, systems with two and four transmit antennas using PPM signals were presented. In both cases we employed full-rate space-time block codes in order to take advantage of the multipath channel. For two transmit antennas, we used the orthogonal space-time block code (OSTBC) proposed by Alamouti and performed symbol-wise decoding by estimating the phase coefficients of the PPM signal using three different methods: maximum-likelihood (ML), sub-optimal ML (S-ML) and the high-order ambiguity function (HAF). In the case of four transmit antennas, we used the full-rate quasi-OSTBC (QOSTBC) proposed by Jafarkhani. However, in order to ensure the best error rate performance, PPM signals were selected such as to maximize the QOSTBC’s minimum coding gain distance (CGD). Since this method does not always provide a unique solution, an additional criterion known as maximum channel interference coefficient (CIC) was proposed. Through Monte Carlo simulations it was shown that by using QOSTBCs along with the properly selected PPM constellations based on the CGD and CIC criteria, full diversity in flat fading channels and thus, low BER at high signal-to-noise ratios (SNR) can be ensured. Lastly, the performance of symbol-wise decoding for QOSTBCs was evaluated. In this case a quasi zero-forcing method was used to decouple the received signal and it was shown that although this technique reduces the decoding complexity of the system, there is a penalty to be paid in terms of error rate performance at high SNRs.
|
5 |
SPACE-TIME CODED SOQPSK IN THE PRESENCE OF DIFFERENTIAL DELAYSNelson, Tom 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / This paper presents a method of detecting the Tier I modulation SOQPSK when it is used in a space-time coded (STC) system in which there is a non-negligible differential delay between the received signals. Space-time codes are useful to eliminate data dropouts which occur on aeronautical telemetry channels in which transmit diversity is employed. The proposed detection algorithm employs a trellis to detect the data while accounting for the offset between the in-phase and quadrature-phase components of the signals as well as the differential delay. The performance of the system is simulated and presented and it is shown that the STC eliminates the BER floor which results from the data dropouts.
|
6 |
Space-Time Coding for Avionic Telemetry ChannelsWang, Jibing, Yao, Kung, Whiteman, Don 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Multiple antennas promise high data capacity for wireless communications. Most space-time coding schemes in literature focus on the rich scatter environment. In this paper, we argue that minimax criterion is a good design criterion for space-time codes over the avionic telemetry channels. This design criterion is different than those of space-time codes over rich scattering Rayleigh fading channels. Theoretical and numerical results show that the codes with optimal performance in Rayleigh fading channels do not necessarily have optimal performance in avionic telemetry channels. Therefore, the space-time codes should be carefully designed/selected when used in the avionic telemetry channels.
|
7 |
ALAMOUTI SPACE-TIME CODING FOR QPSK WITH DELAY DIFFERENTIALNelson, Tom 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Space-time coding (STC) for QPSK where the transmitted signals are received with the same delay is well known. This paper examines the case where the transmitted signals are received with a nonnegligible delay differential when the Alamouti 2x1 STC is used. Such a differential can be caused by a large spacing of the transmit antennas. In this paper, an expression for the received signal with a delay differential is derived and a decoding algorithm for that signal is developed. In addition, the performance of this new algorithm is compared to the standard Alamouti decoding algorithm for various delay differentials.
|
8 |
Can Space Time Encoding and Adaptive Equalization Benefit Rotary-Wing Missions at the Yuma Proving Ground?Diehl, Michael, Swain, Jason, Wilcox, Tab 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / The US Army Yuma Proving Ground (YPG) utilizes telemetry in several critical ways. Data, video, and voice from test aircraft provides YPG the information necessary to effectively execute missions. This information must be displayed real-time for efficient use of available flight time, making a robust telemetry link vital. In seeking an increased telemetry downlink capability, YPG considered three new technologies: Space Time Coding (STC), Adaptive Equalization (EQ), and Low Density Parity Check (LDPC). These technologies have shown reduced multipath and increased datalink reliability on fixed-wing aircraft; however, YPG's concern was the technology's benefits on rotary wing aircraft tested here. To assess potential benefits of these technologies, YPG conducted flight tests using representative flight profiles and vendor-supplied equipment to collect quantitative and qualitative data.
|
9 |
Integration of Space-Time Coding and Complementary Code CDMA System: System Design and Theoretical AnalysisYeh, Yu-Ching 20 August 2004 (has links)
This thesis mainly focuses on the integration of Space-Time Block Coding (STBC) and Complementary Code based CDMA system. Our proposed integration systems have not only the merit of complementary code but also the extra advantage of diversity gain from STBC. Especially, when the different frequency channel gain has strong correlation, the complementary code will cancel most of interference.
We also present a lot of improved structures for our proposed systems. We utilize special filters in receiver such as Zero-Forcing filter and Turbo Filter to assist complementary code in canceling interference.
|
10 |
Space-Time-Frequency 3-Dimensional Complementary Coded CDMA SystemsWu, Cheng-Lung 10 September 2007 (has links)
none
|
Page generated in 0.0901 seconds