Spelling suggestions: "subject:"lparse projection"" "subject:"apparse projection""
1 |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros / Sparse convex quadratic programming methods and their applications in projections onto poliedraPolo, Jeinny Maria Peralta 07 March 2013 (has links)
O problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhos / The linearly constrained minimization problem is important, not only for the problem itself, that arises in several areas, but because it is used as a subproblem in order to solve more general nonlinear programming problems. GENLIN is an efficient method for solving small and medium scaled linearly constrained minimization problems. To implement a similar method to solve large scale problems, it is necessary to have an efficient method to solve sparse projection problems onto linear constraints. The problem of projecting a point onto a set of linear constraints can be written as a convex quadratic programming problem. In this work, we study and implement sparse methods to solve box constrained convex quadratic programming problems, in particular the classical Moré-Toraldo method and the NQC \"method\". The Moré-Toraldo method uses the Conjugate Gradient method to explore the face of the feasible region defined by the current iterate, and the Projected Gradient method to move to a different face. The NQC \"method\" uses the Spectral Projected Gradient method to define the face in which it is going to work, and the Newton method to calculate the minimizer of the quadratic function reduced to this face. We used the sparse methods Moré-Toraldo and NQC to solve the projection problem of GENLIN and we compared their performances
|
2 |
Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros / Sparse convex quadratic programming methods and their applications in projections onto poliedraJeinny Maria Peralta Polo 07 March 2013 (has links)
O problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhos / The linearly constrained minimization problem is important, not only for the problem itself, that arises in several areas, but because it is used as a subproblem in order to solve more general nonlinear programming problems. GENLIN is an efficient method for solving small and medium scaled linearly constrained minimization problems. To implement a similar method to solve large scale problems, it is necessary to have an efficient method to solve sparse projection problems onto linear constraints. The problem of projecting a point onto a set of linear constraints can be written as a convex quadratic programming problem. In this work, we study and implement sparse methods to solve box constrained convex quadratic programming problems, in particular the classical Moré-Toraldo method and the NQC \"method\". The Moré-Toraldo method uses the Conjugate Gradient method to explore the face of the feasible region defined by the current iterate, and the Projected Gradient method to move to a different face. The NQC \"method\" uses the Spectral Projected Gradient method to define the face in which it is going to work, and the Newton method to calculate the minimizer of the quadratic function reduced to this face. We used the sparse methods Moré-Toraldo and NQC to solve the projection problem of GENLIN and we compared their performances
|
Page generated in 0.1071 seconds