Spelling suggestions: "subject:"epectral interference"" "subject:"8pectral interference""
1 |
Plasma Temperature Measurements in the Context of Spectral InterferenceSeesahai, Brandon 01 January 2016 (has links)
The path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference encountered in a LIBS spectrum because it blends possible ionic or atomic transitions that occur in plasma. To make use of the information or transitions not resolved in a LIBS spectrum, a plasma temperature method is developed. The basic theory of a LIBS plasma, broadening mechanisms, thermal equilibrium and distribution laws, and plasma temperature methods are discussed as background support for the plasma temperature method tested in this thesis. In summary, the plasma temperature method analyzes the Full Width at Half the Maximum (FWHM) of each spectral line for transitions provided from a database and uses them for temperature measurements. The first implementation of the temperature method was for simulated spectra and the results are compared to other conventional temperature measurement techniques. The temporal evolution of experimental spectra are also taken as a function of time to observe if the newly developed temperature technique can perform temporal measurements. Lastly, the temperature method is tested for a simulated, single element spectrum when considering interferences from all the elements provided in an atomic database. From stimulated and experimental spectra analysis to a global database consideration, the advantages and disadvantages of the temperature method are discussed.
|
2 |
Uma plataforma para avaliar a degradação da vazão causada por interferência espectral em redes sem fio padrão IEEE 802.11 / A platform for evaluating the degradation the flow caused by the spectral interference in wireless networks IEEE 802.11Carvalio Junior, Dagoberto 20 December 2010 (has links)
A interferência espectral gera patologias nos sistemas de comunicação sem fio (wireless), como por exemplo, quedas na comunicação e degradação na vazão. O espectro de RF (rádio frequência) é fiscalizado e controlado por órgãos governamentais, no entanto as redes sem fio padrão IEEE 802.11, conhecidas por WLANs (Wireless Local Area Networks), trabalham em faixas espectrais não licenciadas, conhecidas por ISM. Estas redes estão cada vez mais presentes nos ambientes comerciais e residenciais, contribuindo para questões de ubiquidade e acesso à Internet. Com este aumento expressivo, a cobertura espectral está cada vez mais densa. A densidade elevada de sinais aponta para a saturação do espectro ISM, causando interferências mútuas das redes IEEE 802.11. O objetivo deste trabalho é analisar a cobertura do espectro, por redes WLANs, e avaliar quedas de vazão ocasionadas por interferências espectrais, variando no espaço e no tempo. Dois cenários foram mapeados para analisar as degradações, um com baixa a média e outro com alta densidade e complexidade. O objetivo da criação desses cenários foi comparar as degradações causadas pelas interferências em ambientes diferentes, na ocupação, na utilização e na propagação de sinais de redes WLANs. Através dos resultados obtidos, um ciclo de vida de gerenciamento do espectro de redes padrão 802.11 foi proposto. Este ciclo contribui para avaliar e classificar o estado de uma rede em densa, não densa, complexa e não complexa, visto que alterações de ocupação do espectro no espaço e no tempo são plausíveis de ocorrerem. Conclui-se que os impactos da sobreposição total do canal, por fontes 802.11, não são suficientes para a substancial degradação da vazão em ambientes de baixa a média complexidade. Em ambientes com alta densidade e complexidade as degradações são mais evidentes, principalmente quando ocorrem perturbações vindas de duas fontes adjacentes / The spectral interference generates pathologies in wireless communication systems (wireless), such as declines in communication and degradation in flow. The spectrum of RF (radio frequency) is supervised and controlled by government agencies, however the wireless standard IEEE 802.11, known as WLANs (Wireless Local Area Networks), work in unlicensed spectrum bands, known as ISM. These networks are increasingly involved in commercial and residential environments, contributing to issues and ubiquity of Internet access. With the significant increase in these networks, the spectral coverage is increasingly dense. The high density of signals pointing to the saturation of the ISM spectrum, causing mutual interference of IEEE 802.11 networks. The aim of this study is to analyze the coverage of the spectrum, for WLANs, and evaluate the flow falls caused by spectral interferences, varying in space and time. Two scenarios were mapped to examine the degradations, with a low to medium and one with high density and complexity. The purpose of creating these scenarios was to compare the degradation caused by interference in different environments, occupation, use and spread of signals WLANs. Through the results, a life cycle management of the spectrum of standard 802.11 networks was proposed. This cycle helps to evaluate and classify the state of a dense network, not dense, complex and not complex, since changes in occupation of the spectrum - in space and time - are plausible to occur. It is concluded that the impacts of the complete overlap of the channel, sources 802.11, are not sufficient to the substantial degradation of the flow in low to medium complexity. In environments with high density and complexity of the degradation is more evident, especially when there are disturbances coming from two adjacent sources
|
3 |
Uma plataforma para avaliar a degradação da vazão causada por interferência espectral em redes sem fio padrão IEEE 802.11 / A platform for evaluating the degradation the flow caused by the spectral interference in wireless networks IEEE 802.11Dagoberto Carvalio Junior 20 December 2010 (has links)
A interferência espectral gera patologias nos sistemas de comunicação sem fio (wireless), como por exemplo, quedas na comunicação e degradação na vazão. O espectro de RF (rádio frequência) é fiscalizado e controlado por órgãos governamentais, no entanto as redes sem fio padrão IEEE 802.11, conhecidas por WLANs (Wireless Local Area Networks), trabalham em faixas espectrais não licenciadas, conhecidas por ISM. Estas redes estão cada vez mais presentes nos ambientes comerciais e residenciais, contribuindo para questões de ubiquidade e acesso à Internet. Com este aumento expressivo, a cobertura espectral está cada vez mais densa. A densidade elevada de sinais aponta para a saturação do espectro ISM, causando interferências mútuas das redes IEEE 802.11. O objetivo deste trabalho é analisar a cobertura do espectro, por redes WLANs, e avaliar quedas de vazão ocasionadas por interferências espectrais, variando no espaço e no tempo. Dois cenários foram mapeados para analisar as degradações, um com baixa a média e outro com alta densidade e complexidade. O objetivo da criação desses cenários foi comparar as degradações causadas pelas interferências em ambientes diferentes, na ocupação, na utilização e na propagação de sinais de redes WLANs. Através dos resultados obtidos, um ciclo de vida de gerenciamento do espectro de redes padrão 802.11 foi proposto. Este ciclo contribui para avaliar e classificar o estado de uma rede em densa, não densa, complexa e não complexa, visto que alterações de ocupação do espectro no espaço e no tempo são plausíveis de ocorrerem. Conclui-se que os impactos da sobreposição total do canal, por fontes 802.11, não são suficientes para a substancial degradação da vazão em ambientes de baixa a média complexidade. Em ambientes com alta densidade e complexidade as degradações são mais evidentes, principalmente quando ocorrem perturbações vindas de duas fontes adjacentes / The spectral interference generates pathologies in wireless communication systems (wireless), such as declines in communication and degradation in flow. The spectrum of RF (radio frequency) is supervised and controlled by government agencies, however the wireless standard IEEE 802.11, known as WLANs (Wireless Local Area Networks), work in unlicensed spectrum bands, known as ISM. These networks are increasingly involved in commercial and residential environments, contributing to issues and ubiquity of Internet access. With the significant increase in these networks, the spectral coverage is increasingly dense. The high density of signals pointing to the saturation of the ISM spectrum, causing mutual interference of IEEE 802.11 networks. The aim of this study is to analyze the coverage of the spectrum, for WLANs, and evaluate the flow falls caused by spectral interferences, varying in space and time. Two scenarios were mapped to examine the degradations, with a low to medium and one with high density and complexity. The purpose of creating these scenarios was to compare the degradation caused by interference in different environments, occupation, use and spread of signals WLANs. Through the results, a life cycle management of the spectrum of standard 802.11 networks was proposed. This cycle helps to evaluate and classify the state of a dense network, not dense, complex and not complex, since changes in occupation of the spectrum - in space and time - are plausible to occur. It is concluded that the impacts of the complete overlap of the channel, sources 802.11, are not sufficient to the substantial degradation of the flow in low to medium complexity. In environments with high density and complexity of the degradation is more evident, especially when there are disturbances coming from two adjacent sources
|
4 |
Ultra narrow band based IoT networks / Réseaux IoT à bande ultra étroiteMo, Yuqi 26 September 2018 (has links)
La compagnie Sigfox est reconnue comme un acteur prometteur pour des transmissions de longue-distance et faible consommation, dans le contexte de l'IoT. La modulation à bande ultra étroite (Ultra Narrow Band (UNB)), la technologie de communication choisie par Sigfox, permet de transmettre des informations dans des bandes de signal très étroites (typiquement 100 Hz). A cause de l'imprécision fréquentielle causée par les oscillateurs générateurs de fréquence, il n'est pas réaliste de transmettre des signaux UNB dans des canaux parfaitement orthogonaux. L'accès naturel au canal radio pour le système de UNB est de type ALOHA, avec un aspect aléatoire à la fois en en temps et en fréquence. Cet accès aléatoire peut introduire des collisions qui dégradent la performance du réseau. Le but de cette thèse est de caractériser la capacité des réseaux basés sur UNB, ainsi que d’améliorer la performance en considérant l'aspect aléatoire en temps et en fréquence. La première contribution de cette thèse, est une évaluation de la capacité en théorie et en simulation pour une seule station de base (BS), sous des conditions de canal idéaliste ou réaliste. En conditions idéalistes, nous avons exprimé la capacité pour le cas de l'ALOHA généralisé, et l'avons étendu aux cas de réplications. Pour les conditions réalistes, nous avons pris en compte l'interférence spectrale d'UNB et le path loss (sans et avec Rayleigh fading) afin de caractériser la performance des réseaux UNB, avec l'outil géométrie stochastique. La deuxième contribution est d'appliquer l’annulation successive d'interférence (SIC), qui nous permet d'atténuer les interférences, dans des réseaux de UNB. Nous avons fourni une analyse théorique de la performance des réseaux en considérant le SIC et l'interférence spectrale de UNB, pour le cas de mono-BS. La troisième contribution est l'amélioration de la performance des réseaux UNB, en exploitant la diversité de multi-BS. Nous avons fait une analyse théorique de performance en considérant multi-BS et selection combining (SC). En particulier, nous avons considéré que l’interférence vue par chaque BS est corrélée. Nous avons ainsi démontré mathématiquement que cette corrélation ne peut pas être supprimée dans des systèmes UNB. Ensuite, nous avons appliqué les technologies de la combinaison des signaux plus complexes comme MRC (max ratio combining) et EGC (equal gain combining), ainsi que le SIC à travers multi-BS. Nous avons évalué l'amélioration de performance que chaque technologie apporte, et les avons comparées. Nous avons souligné l'efficacité de ces technologies qui nous permettent d’obtenir des gains importants comparés au cas mono-BS (e.x. 125 fois plus de réduction d'erreur avec SIC globale). La dernière contribution est une validation expérimentale du modèle d'interférence spectrale de UNB, ainsi que la capacité des réseaux UNB, sur un testbed de radio FIT/Cortexlab. / Sigfox rises as a promising candidate dedicated for long-distance and low-power transmissions in the IoT backgrounds. Ultra Narrow Band (UNB), being the communication technology chosen by Sigfox, allows to transmit information through signals whose bandwidth is very limited, typically 100 Hz. Due to the imprecision restraint on electronic devices, it is impossible to transmit UNB signals in orthogonal channels. The natural radio access for this kind of system is thus random ALOHA, in both time and frequency domain. This random access can induce collisions which degrades the networks performance. The aim of this thesis is to characterize the capacity of UNB based networks, as well as to enhance its performance, by considering the randomness in time and frequency. The first contribution of the thesis, is the theoretical and numerical capacity evaluation under idealized and realistic channel conditions, for mono base station (BS) case. Under idealized conditions, we have quantified this capacity for generalized ALOHA case and extended for replications. We highlight the time-frequency duality in UNB systems, and that there exists an optimum replication number for a given network parameter set. Under realistic conditions, we have taken into account the specific spectral interference of UNB systems and propagation path loss (without and with Rayleigh fading) to characterize the performance, with the aid of stochastic geometry. The second contribution is the enhancement of UNB network performance in single BS case. We propose to use successive interference cancellation (SIC) in UNB networks, which allows to mitigate the interference. We have provided a theoretical analysis by considering both SIC and the spectral interference, for mono-BS case. We bring to light the efficiency of SIC in enhancing UNB system performance. The third contribution is the improvement of UNB systems, by exploiting the multiple BS diversity. An analytical performance evaluation considering the simplest selection combining is conducted. In particular, we consider the interference viewed by all the BSs are correlated. Then we apply more complex signal combining technologies such as MRC (max ratio combining) and EGC (equal gain combining), and even interference cancellation across multi-BS in UNB networks. We evaluate the performance improvement that each technology can bring, and compare them with each other. We highlight the efficiency of these multi-BS technologies which allow us to achieve significant performance enhancement compared to mono-BS (e.x. 125 times better performance with global SIC). Last but not least, we experimentally verify the the spectral interference model and network capacity on a cognitive radio testbed.
|
Page generated in 0.1193 seconds