Spelling suggestions: "subject:"apline theory"" "subject:"bspline theory""
81 |
Inferência não paramétrica baseada no método H-splines para a intensidade de processos de Poisson não-homogêneos / Nonparametric inference based on H-splines method for intensity of inhomogeneous Poisson processAlcantara, Adeilton Pedro de, 1973- 21 August 2018 (has links)
Orientadores: Ronaldo Dias, Nancy Lopes Garcia / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T02:16:44Z (GMT). No. of bitstreams: 1
Alcantara_AdeiltonPedrode_D.pdf: 7403994 bytes, checksum: a1b986bd21c825efb7bc7ecbb40c550f (MD5)
Previous issue date: 2012 / Resumo: Esta tese tem por objetivo propor uma nova metodologia baseada no método da expansão por bases B-splines e suas variantes para estimação não paramétrica da função intensidade...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The main goal of this thesis is to propose a new methodology based on the method of expansion by B-splines bases for non-parametric estimate of the intensity function...Note: The complete abstract is available with the full electronic document / Doutorado / Estatistica / Doutor em Estatística
|
82 |
On the use of optimized cubic spline atomic form factor potentials for band structure calculations in layered semiconductor structuresMpshe, Kagiso 18 March 2016 (has links)
The emperical pseudopotential method in the large basis approach was used to calculate
the electronic bandstructures of bulk semiconductor materials and layered semiconductor
heterostructures. The crucial continuous atomic form factor potentials needed to carry out
such calculations were determined by using Levenberg-Marquardt optimization in order
to obtain optimal cubic spline interpolations of the potentials. The optimized potentials
were not constrained by any particular functional form (such as a linear combination of
Gaussians) and had better convergence properties for the optimization. It was demonstrated
that the results obtained in this work could potentially lead to better agreement
between calculated and empirically determined band gaps via optimization / Physics / M. Sc. (Physics)
|
83 |
Esquemas de aproximação em multinível e aplicações / Multilevel approximation schemes and applicationsCastro, Douglas Azevedo, 1982- 12 December 2011 (has links)
Orientador: Sônia Maria Gomes, Jorge Stolfi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T12:39:30Z (GMT). No. of bitstreams: 1
Castro_DouglasAzevedo_D.pdf: 8872633 bytes, checksum: a17b2761789c6a831631ac143fdf5ca7 (MD5)
Previous issue date: 2011 / Resumo: O objetivo desta tese é desenvolver algoritmos baseados em malhas e bases funcionais inovadoras usando técnicas de multiescala para aproximação de funções e resolução de problemas de equações diferenciais. Para certas classes de problemas, é possível incrementar a eficiência dos algoritmos de multiescala usando bases adaptativas, associadas a malhas construídas de forma a se ajustarem com o fenômeno a ser modelado. Nesta abordagem, em cada nível da hierarquia, os detalhes entre a aproximação desse nível e a aproximação definida no próximo nível menos refinado pode ser usada como indicador de regiões que necessitam de mais ou menos refinamento. Desta forma, em regiões onde a solução é suave, basta utilizar os elementos dos níveis menos refinados da hierarquia, enquanto que o maior refinamento é feito apenas onde a solução tiver variações bruscas. Consideramos dois tipos de formulações para representações multiescala, dependendo das bases adotadas: splines diádicos e wavelets. A primeira abordagem considera espaços aproximantes por funções splines sobre uma hierarquia de malhas cuja resolução depende do nível. A outra abordagem considera ferramentas da analise wavelet para representações em multirresolução de médias celulares. O enfoque está no desenvolvimento de algoritmos baseados em dados amostrais d-dimensionais em malhas diádicas que são armazenados em uma estrutura de árvore binária. A adaptatividade ocorre quando o refinamento é interrompido em algumas regiões do domínio, onde os detalhes entre dois níveis consecutivos são suficientemente pequenos. Um importante aspecto deste tipo de representação é que a mesma estrutura de dados é usada em qualquer dimensão, além de facilitar o acesso aos dados nela armezenados. Utilizamos as técnicas desenvolvidas na construção de um método adaptativo de volumes finitos em malhas diádicas para a solução de problemas diferenciais. Analisamos o desempenho do método adaptativo em termos da compressão de memória e tempo de CPU em comparação com os resultados do esquema de referência em malha uniforme no nível mais refinado. Neste sentido, comprovamos a eficiência do método adaptativo, que foi avaliada levando-se em consideração os efeitos da escolha de diferentes tipos de fluxo numérico e dos parâmetros de truncamento / Abstract: The goal of this thesis is to develop algorithms based on innovative meshes and functional bases using multiscale techniques for function approximation and solution of differential equation problems. For certain classes of problems, one can increase the efficiency of multiscale algorithms using hierarchical adaptive bases, associated to meshes whose resolution varies according to the local features of the phenomenon to be modeled. In this approach, at each level of the hierarchy the details-differences between the approximation for that level and that of the next coarser level-can be used as indicators of regions that need more or less refinement. In this way, in regions where the solution is smooth, it suffices to use elements of the less refined levels of the hierarchy, while the maximum refinement is used only where the solution has sharp variations. We consider two classes of formulations for multiscale representations, depending on the bases used: dyadic splines and wavelets. The first approach uses approximation spaces consisting of spline functions defined over a mesh hierarchy whose resolution depends on the level. The other approach uses tools from wavelet analysis for multiresolu-tion representations of cell averages. The focus is on the development of algorithms based on sampled d-dimensional data on dyadic meshes which are stored in a binary tree structures. The adaptivity happens when the refinement is interrupted in certain regions of the domain, where the details between two consecutive levels are sufficiently small. This representation greatly simplifies the access to the data and it can be used in any dimension. We use these techniques to build an adaptive finite volume method on dyadic grids for the solution of differential problems. We analyze the performance of the method in terms of memory compression and CPU time, comparing it with the reference scheme (which uses a uniform mesh at the maximum refinement level). In these tests, we confirmed the efficiency of the adaptive method for various numeric flow formulas and various choices of the thresholding parameters / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
84 |
Test particle transport in turbulent magnetohydrodynamic structuresLalescu, Cristian 01 July 2011 (has links)
Turbulent phenomena are found in both natural (e.g. the Earth's oceans, the Sun's corona) and artificial (e.g. flows through pipes, the plasma in a tokamak device) settings; evidence suggests that turbulence is usually the normal behaviour in most cases. Turbulence has been studied extensively for more than a century, but a complete and consistent theoretical description of it has not yet been proposed. It is in this context that the motion of particles under the influence of turbulent fields is studied in this work, with direct numerical simulations. The thesis is structured in three main parts. The first part describes the tools that are used. Methods of integrating particle trajectories are presented, together with a discussion of the properties that these methods should have. The simulation of magnetohydrodynamic (MHD) turbulence is discussed, while also introducing fundamental concepts of fluid turbulence. Particle trajectory integration requires information that is not readily available from simulations of turbulent flows, so the interpolation methods needed to adapt the fluid simulation results are constructed as well. The second part is dedicated to the study of two MHD problems. Simulations of Kolmogorov flow in incompressible MHD are presented and discussed, and also simulations of the dynamo effect in compressible MHD. These two scenarios are chosen because large scale structures are formed spontaneously by the turbulent flow, and there is an interest in studying particle transport in the presence of structures. Studies of particle transport are discussed in the third part. The properties of the overall approach are first analyzed in detail, for stationary predefined fields. Focus is placed on the qualitative properties of the different methods presented. Charged article transport in frozen turbulent fields is then studied. Results concerning transport of particles in fully developed, time-evolving, turbulent fields are presented in the final chapter.<p><p><p>\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0425 seconds