Spelling suggestions: "subject:"spruce line"" "subject:"spruce eine""
1 |
Economic Potential of Rare Earth Elements Within Accessory Minerals of Granitic Pegmatite Mine TailingsKegley, Dalton Curtis 29 June 2021 (has links)
Rare Earth elements (REEs) are economically important due to their critical applications within multiple industries. This study investigates the Spruce Pine district of North Carolina, testing the economic feasibility of repurposing current mine waste tailings as a rare earth element resource. Spruce Pine is home to several active quartz and feldspar mining operations, with large waste tailing piles generated during the separation process for quartz and feldspar. The mineralogy, composition, and REE budget of the tailings was examined to assess the economic viability of rare earth element extraction. The local geology includes a series of muscovite class pegmatites of Devonian age (390 Ma), intruded into the primarily amphibolite-grade units of the Ashe and Alligator Back formations (Wood, 1996). The waste tailing piles of two on-going quartz mining operations were sampled to evaluate the potential economic feasibility of rare earth element extraction from key accessory phases, including apatite, remaining from the initial separation process. Sample characterization utilized laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence (XRF), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD). The results of this investigation support the conclusion that, at the current recovery rate, price of rare earth elements, and cost of refinement, economic recovery of REE from the studied tailings is not viable. However, yttrium and dysprosium offer the highest potential for economic recovery. If some combination of improvements to the extraction process, reduction in refinement cost, or increases in price occur, yttrium and dysprosium are sufficiently abundant that extraction could become economically viable. / Master of Science / Rare Earth elements (REEs) are comprised of the Lanthanide series of elements as well as yttrium and scandium. REEs are economically important due to their critical applications within multiple industries. Current uses include electronics, magnets, lasers, electric motors, optical fibers, nuclear reactor control rods, visual displays, etc. Although the demand for REEs is high, the current sourcing of REEs is quite scarce. This study investigates the Spruce Pine district of North Carolina, testing the economic feasibility of repurposing current mine waste tailings as a rare earth element resource. Spruce Pine is home to several active quartz and feldspar mining operations, with large waste tailing piles generated during the separation process for quartz and feldspar. The mineralogy, composition and REE budget of the tailings was examined to assess the economic viability of rare earth element extraction. The waste tailing piles of two on-going quartz mining operations were sampled to evaluate the potential economic feasibility of rare earth element extraction from key accessory phases, including apatite, remaining from the initial separation process. The results of this investigation support the conclusion that, at the current recovery rate, price of rare earth elements, and cost of refinement, economic recovery of REE from the studied tailings is not viable. However, yttrium and dysprosium offer the highest potential for economic recovery. If some combination of improvements to the extraction process, reduction in cost of refinement, or increase in price were to occur, yttrium and dysprosium are sufficiently abundant that extraction could become economically viable.
|
2 |
Petrogenesis of the Spruce Pine pegmatites, North CarolinaWood, Patricia Ann 22 August 2008 (has links)
Pegmatites in the Spruce Pine district, North Carolina, are an example of muscovite class pegmatites that were derived from differentiation of a magma. There are eight granodiorite plutons in the Spruce Pine area ranging in size from 1 to 20 square kilometers that contain and are surrounded by hundreds of pegmatites. The granodiorite and the pegmatites are mineralogically and chemically identical, indicating that they formed from a common magma. The pegmatites appear to have formed in the granodiorite, becoming larger and more abundant near the margins of the plutons before intruding into the surrounding country rock.
Major and trace element data from muscovite plotted on a map of the area reveal a systematic regional trend where either the highest or lowest concentrations occur along a central northeast-trending belt in the Spruce Pine district, with the concentration either decreasing or increasing, respectively, to the northwest and southeast. Similarly, more calcic plagioclase is located in the same central portion of the district, whereas more sodic plagioclase is found at the margins of the district. These regular variations in mineral chemistry are the result of fractionation of the pegmatites away from the core of a common magmatic source. K-feldspar, garnet, beryl and tourmaline also have similar regional trends. Although the chemical core of the area revealed by the mineral chemistry does not correspond to an exposure of granodiorite, it may correspond to the core of a larger plutonic body that has not been completely exposed by erosion. Variations in granodiorite texture may reflect zoning within this larger magmatic body. The systematic regional variations in the major and trace element chemistry of minerals as well as the relationship between the granodiorite and the pegmatites support the conclusion that the Spruce Pine pegmatites were derived from differentiation of the granodiorite magma. / Master of Science
|
3 |
Estimation of Nutrient Exports Resulting from Thinning and Intensive Biomass Extraction in Medium-Aged Spruce and Pine Stands in Saxony, Northeast Germany.Knust, Christine, Feger, Karl-Heinz 27 March 2017 (has links)
A growing interest in using forest biomass for bioenergy generation may stimulate intensive harvesting scenarios in Germany. We calculated and compared nutrient exports of conventional stem only (SO), whole tree without needles (WT excl. needles), and whole tree (WT) harvesting in two medium aged Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) stands differing in productivity, and related them to soil nutrient pools and fluxes at the study sites. We established allometric biomass functions for each aboveground tree compartment and analyzed their nutrient contents. We analyzed soil nutrient stocks, estimated weathering rates, and obtained deposition and seepage data from nearby Level II stations. WT (excl. needles) and WT treatments cause nutrient losses 1.5 to 3.6 times higher than SO, while the biomass gain is only 1.18 to 1.25 in case of WT (excl. needles) and 1.28 to 1.30 in case of WT in the pine and spruce stand, respectively. Within the investigated 25-year period, WT harvesting would cause exports of N, K+, Ca2+, and Mg2+ of 6.6, 8.8, 5.4, and 0.8 kg·ha−1 in the pine stand and 13.9, 7.0, 10.6, and 1.8 kg·ha−1 in the spruce stand annually. The relative impact of WT and WT (excl. needles) on the nutrient balance is similar in the pine and spruce stands, despite differences in stand productivities, and thus the absolute amount of nutrients removed. In addition to the impact of intensive harvesting, both sites are characterized by high seepage losses of base cations, further impairing the nutrient budget. While intensive biomass extraction causes detrimental effects on many key soil ecological properties, our calculations may serve to implement measures to improve the nutrient balance in forested ecosystems.
|
4 |
Auswirkungen der pilzlichen Artengemeinschaft sowie ausgewählter Pilzenzyme und physikochemischer Totholzparameter auf die Zersetzung von 13 Baumarten im Nationalpark Hainich-DünLeonhardt, Sabrina 16 June 2020 (has links)
Totholz ist als wichtiges Strukturelement in Waldökosystemen und von zentraler Bedeutung für deren Funktion. Es dient zahlreichen Organismen als Lebensraum oder Substrat und ist wichtiger Bestandteil des Kohlenstoff- und Nährstoffkreislaufes. Um Totholz effizient zu zersetzen, haben saprobionte Pilze aus den Phyla der Basidiomycota und Ascomycota verschiedene ökologische und physiologische Strategien entwickelt. Die bedeutendste Rolle im Totholzabbau spielen dabei Weißfäulepilze. Sie sind in der Lage, mit ihren extrazellulären oxidativen Enzymen, wie Laccasen und verschiedenen Peroxidasen, Lignin anzugreifen, chemisch zu modifizieren und abzubauen. Über den Abbauprozess im natürlichen Totholz durch lignocellulolytische Enzyme und deren dazugehörige Pilzgemeinschaft sowie über Faktoren, die zusätzlich Einfluss auf Abbauprozesse nehmen können, ist wenig bekannt. Das Ziel dieser Arbeit innerhalb des BELongDead-Projekts (als Teil der Biodiversitäts-Exploratorien) war es deshalb, den pilzlichen Abbau von Totholz in der fortgeschrittenen initialen Phase (nach ca. sechs Jahren) des Zersetzungsprozesses zu betrachten. Weiter sollte die Rolle der lignocellulolytischen Enzyme beschrieben und ihre Abhängigkeiten von verschiedenen physikalisch-chemischen Totholzvariablen aufgezeigt werden. Darüber hinaus sollte geklärt werden, welchen Einfluss die Zusammensetzung der pilzlichen Gemeinschaft auf den Totholzabbau hat und welche Arten sowie Ökotypen dominieren. Hierfür wurden natürliche Totholzstämme 13 verschiedener heimischer Baumarten (Acer sp., Betula sp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Larix decidua, Picea abies, Pinus sylvestris, Populus sp., Prunus avium, Pseudotsuga menziesii, Quercus sp. und Tilia sp.) im Nationalpark Hainich-Dün (Thüringen) untersucht. Zusätzlich erfolgte die getrennte Betrachtung der pilzlichen Abbauprozesse im Splint- und Kernholz. Insgesamt wurden 82 Totholzproben entnommen und darin die Aktivitäten der Lignin-modifizierenden Enzyme (Laccase/Lac, Generelle Peroxidase/GenP, Mangan-Peroxidase/MnP) und verschiedener (hemi)cellulolytischer Enzyme gemessen. Zudem wurden Enzyme, die im Stickstoff-, Phosphor- und Schwefelkreislauf eine Rolle spielen, betrachtet. Des Weiteren wurden Totholzvariablen wie Pilzbiomasse, pH-Wert, Wassergehalt, wasserlösliche Ligninfragmente, die Gehalte an Lignin und Extraktiven sowie an Nährstoffen (C, N, C:N) und Metallen (Ca, Cu, K, Mg, Mn und Zn) ermittelt. Die pilzliche Gemeinschaftsstruktur und Artenzahl wurde mit Hilfe einer Next Generation Sequencing Methode (Illumina MiSeq) erfasst.
Aufgrund der physikalischen und chemischen Eigenschaften des Holzes wurden für die 13 verschiedenen Baumarten und das Splint- und Kernholz signifikante Unterschiede bezüglich III der lignocellulolytischen Enzymaktivitäten und der analysierten Totholzvariablen (z.B. pHWert, Ligningehalt, Pilzbiomasse, wasserlösliche Ligninfragmente, bioverfügbare Elemente) gefunden. Die Enzymaktivitäten und die physikalisch-chemischen Totholzvariablen sowie die Nährstoffe und Metallgehalte waren zumeist im Laubholz höher als im Nadelholz sowie im Splintholz höher als im Kernholz. Die Aktivitäten der Lignin-modifizierenden Enzyme waren sehr variabel in den untersuchten Totholzproben, wobei hohe mittlere Lac-, GenP- und MnP-Aktivitäten nur in einzelnen Baumgattungen (> 50 mU g-1; Carpinus, Fagus, Betula, Acer, Tilia, Populus) ermittelt wurden. Hingegen wurden relevante mittlere cellulolytische und hemicellulolytische Enzymaktivitäten in fast jeder Baumart gefunden. Die ermittelte Pilzbiomasse korrelierte positiv mit dem Stickstoffgehalt und der pilzlichen Gemeinschaft, hingegen negativ mit den Extraktiven und der ermittelten Artenzahl. Weiterhin sollten die Unterschiede der pilzlichen Artengemeinschaft in den verschiedenen Baumarten sowie im Splint- und Kernholz geklärt werden. Generell zeigten sich signifikante Unterschiede in der Zusammensetzung der pilzlichen Gemeinschaft innerhalb der 13 Baumarten, jedoch wurde kein signifikanter Unterschied zwischen den Splint- und Kernholzproben gefunden. Es kann davon ausgegangen werden, dass eine Besiedlung durch Pilze vom Splintholz zum Kernholz hin erfolgt und sich die pilzliche Gemeinschaft zwischen dem Splint- und Kernholz nicht signifikant ändert während der Besiedlung. Neben der Pilzbiomasse korrelierten der pH-Wert, die organischen Extraktive und der Gehalt an Lignin positiv mit der Pilzgemeinschaft. Insgesamt ließen sich 194 Familien nachweisen, wobei die am häufigsten vorkommenden Pilzfamilien die Helotiaceae und Polyporaceae waren. Die Pilzart Ascocoryne sarcoides der Familie Helotiaceae dominierte in Betula und Pinus sowie im Kernholz von Fagus und Fraxinus. Die zweithäufigste Art, Bjerkandera adusta aus der Familie Meruliaceae, dominierte generell die Totholzproben in dieser Arbeit. Auch die Betrachtung der molekularen pilzlichen Gemeinschaftsstruktur in Bezug zu den Enzymaktivitäten ergab für einige Enzyme (z.B. Lac, MnP) positive Korrelationen. Die Sequenzabundanzen der Weißfäulepilze und der Meruliaceae zeigten signifikant positive Korrelationen zur Aktivität der Mangan-Peroxidase. Das häufige Auftreten von Weißfäulepilzen sowie die gleichzeitige Präsenz oxidativer Enzymaktivitäten und charakteristischer Molekularmassenverteilungen der wasserlöslichen Ligninfragmente lassen auf die fundamentale Bedeutung von Peroxidasen für die Zersetzung des Totholzes schließen. Einen direkten Zusammenhang der Metallkonzentrationen mit den oxidativen Enzymaktivitäten wurde nur in Teilen beobachtet, da einzig die Aktivität der Laccase positiv mit dem Gehalt an Kupfer korrelierte.
Abschließend erfolgte die Untersuchung des Genoms des häufig in den Totholzproben präsenten Ascomyceten Coniochaeta (Lecythophora) hoffmannii. Da Pilze aus der Familie Coniochaetaceae ubiquitär im Totholz zu finden sind, aber nur wenig über ihre Biologie bekannt ist, sollte die Sequenzierung des Genoms Auskunft über ihre Gene, die möglicherweise am Abbau beteiligt sind, geben. Die Analyse des Genoms von C. hoffmanii ergab 629 putative Enzyme und assoziierte Protein-Module (CAZymes, carbohydrate-active enzymes), darunter 74 aus der CBM Proteinfamilie (carbohydrate-binding modules). Echte lignolytische Peroxidasen (MnP, LiP oder VP) wurden allerdings nicht gefunden.:Zusammenfassung II
Abstract V
Inhaltsverzeichnis IX
Abkürzungsverzeichnis XII
1 Einleitung 1
1.1 Entstehung und Vorkommen von Totholz 4
1.2 Bedeutung von Totholz 7
1.3 Biodiversität im Totholz 11
1.4 Anatomie und chemischer Aufbau des Holzes 15
1.4.1 Die Holzstruktur 15
1.4.2 Die pflanzlichen Zellwandkomponenten und der Lignocellulose-Komplex 17
1.5 Holzzersetzende Pilze und ihre ökophysiologische Einteilung 23
1.6 Enzymatik des pilzlichen Totholzabbaus 27
1.6.1 Enzymatische Hydrolyse der Polysaccharide im Holz 28
1.6.2 Abbau und Modifizierung des Lignins durch oxidative Enzyme 30
1.7 Stand der Totholz–Forschung in den Deutschen Biodiversitäts-Exploratorien .34
2 Zielstellungen 39
3 Material und Methoden 42
3.1 Materialien 42
3.1.1 Untersuchungen am natürlichen Totholz 42
3.1.1.1 Untersuchungsgebiet Hainich-Dün 42
3.1.1.2 Plot-Design und Beprobung der Stämme auf den VIP-Flächen 44
3.2 Methoden 45
3.2.1 Aufbereitung der Totholzproben 45
3.2.2 Photometrische Bestimmung enzymatischer Aktivitäten 46
3.2.2.1 Oxidative Enzymaktivitäten 46
3.2.2.2 Aktivitäten der Endo-1,4-β-Cellulase und Endo-1,4-β-Xylanase 48
3.2.3 HPLC-basierte Methoden zur Bestimmung enzymatischer Aktivitäten 49
3.2.3.1 Bestimmungen hydrolytischer Aktivitäten mittels HPLC-DAD 49
3.2.3.2 Untersuchung der wasserlöslichen Lignin-Fragmente mittels HPSEC .52
3.2.3.3 Bestimmung der pilzlichen Biomasse 53
3.2.4 Bestimmung der physikalischen und chemischen Holzparameter 54
3.2.4.1 Organische Extraktive 54
3.2.4.2 KLASON-Lignin und säurelösliches Lignin 55
3.2.4.3 Bioverfügbare Metalle 56
3.2.4.4 Ermittlung des Kohlenstoff- und Stickstoffgehalts 56
3.2.5 Bestimmung der molekularen pilzlichen Diversität im Totholz 57
3.2.6 Analyse der Genome ausgewählter holzzersetzender Pilze 59
3.3 Statistiken 60
4 Ergebnisse 62
4.1 Enzymatische Aktivitäten in den 13 Baumarten 62
4.1.1 Oxidative Enzyme 63
4.1.2 Hydrolytische Enzyme 65
4.2 Unterschiede in Totholzvariablen und Elementen in den verschiedenen Baumarten 68
4.2.1 Totholzvariablen 68
4.2.2 Nährstoffgehalte und Elemente 74
4.2.3 Korrelationen zwischen den ligninolytischen Enzymaktivitäten und
verschiedenen Totholzvariablen 79
4.3 Die Struktur der pilzlichen Gemeinschaft und die Artenzahl 80
4.3.1 Die Struktur der pilzlichen Artengemeinschaft 81
4.3.2 Ökologie der gefundenen Pilzarten 88
4.3.3 Pilzliche Artenzahl 89
4.3.4 Korrelationen zwischen Pilzgemeinschaft, Enzymaktivitäten und physikalisch-chemischen Parametern 91
4.3.5 Korrelationen der Pilzfamilien und Ökotypen mit den Enzymaktivitäten 96
4.4 Genomanalyse von Coniochaeta (Lecythophora) hoffmanii 97
5 Diskussion 100
5.1 Allgemeine Unterschiede zwischen den Baumarten 100
5.1.1 Totholzvariablen, Nährstoffe und bioverfügbare Elemente 100
5.1.2 Die lignocellulolytischen Enzymaktivitäten 106
5.1.2.1 Lignin-modifizierende Enzyme (LME) 106
5.1.2.2 Cellulolytische und hemicellulolytische Enzyme 113
5.2 Die pilzliche Artengemeinschaft 119
5.2.1 Dominierende Pilzfamilien, Pilzarten und ökophysiologische Pilzgruppen 122
5.2.2 Zusammenhänge zwischen der pilzlichen Diversität und den abiotischen sowie
biotischen Variablen des Totholzes 127
5.2.2.1 Zusammenspiel der molekularen Pilzgemeinschaft mit Totholzparametern
und Enzymaktivitäten 127
5.2.2.2 Die Variabilität der molekularen Artenzahl und der Totholzparameter 131
5.2.2.3 Unterschiede zwischen den ökophysiologischen Pilzgruppen 132
5.2.2.4 Zusammenhänge zwischen ausgewählten Pilzfamilien und den Enzym-
Aktivitäten 133
6 Ausblick 136
Literaturverzeichnis 138
Anhang 172
Publikationen 178
Danksagung 215
Eidesstattliche Erklärung 217 / Deadwood is an important structural element and particularly relevant in forest ecosystems, as it serves as habitat and substrate for numerous organisms. Furthermore, it contributes to the carbon and nutrient cycle. Saprotrophic fungi from the phyla Basidiomycota and Ascomycota have developed various ecological and physiological strategies to efficiently decompose deadwood. Particularly, white-rot fungi play a crucial role in deadwood decomposition. They are able to oxidatively attack, chemically modify and degrade lignin with their extracellular enzymes such as laccases and various peroxidases. Nevertheless, little is known about the degradation process by lignocellulolytic enzymes in natural deadwood and the responsible fungal communities as well as on abiotic factors influencing decomposition. Therefore, the goal of this thesis within the BELongDead project (part of the German Biodiversity Exploratories) has been to investigate the fungal degradation of deadwood in the advanced initial phase (after about six years) of the decay process. Furthermore, the role of lignocellulolytic enzymes was analyzed and their dependence on various physical and chemical deadwood variables was shown. In addition, the thesis aims at clarifying the influence of the composition of the fungal community on deadwood decomposition and at answering the question which fungal species and ecotypes dominate during that process. For this purpose, natural deadwood logs of 13 tree species (Acer sp., Betula sp., Carpinus betulus, Fagus
sylvatica, Fraxinus excelsior, Larix decidua, Picea abies, Pinus sylvestris, Populus sp., Prunus avium, Pseudotsuga menziesii, Quercus sp sp.) were analyzed in the Hainich-Dün National Park in Thuringia (Germany). Moreover, the fungal decomposition process was separately considered with regard to sapwood and heartwood. A total of 82 deadwood samples were taken to analyze the activities of the lignin-modifying enzymes (laccase/Lac, General peroxidase/GenP, manganese peroxidases/MnP) and various (hemi)cellulolytic enzymes (Polysaccharide hydrolases); enzymes that play a role in the nitrogen, phosphorus and sulfur cycles were considered as well. Moreover, deadwood variables such as fungal biomass, pH, water content, water-soluble lignin fragments, lignin and extractive content as well as nutrients (C, N, C: N) and metals (Ca, Cu, K, Mg, Mn and Zn) were also determined. The fungal community structure and species richness were analyzed by using a Next Generation Sequencing method (Illumina MiSeq).
Because of the varying physical and chemical characteristics, significant differences were ascertained for lignocellulolytic enzyme activities and analyzed deadwood variables (e.g. pH, lignin content, fungal biomass, water soluble lignin fragments, bioavailable elements) between the 13 different tree species and between sapwood and heartwood. Generally speaking, the enzyme activities and the physico-chemical deadwood variables as well as the nutrients and metal contents were higher in deciduous than in coniferous trees and higher in sapwood than in heartwood. The activities of lignin-modifying enzymes were highly variable in the deadwood samples and relative high mean values of Lac, GenP and MnP were determined only in few tree species (> 50 mU g-1; Carpinus, Fagus, Betula, Acer, Tilia, Populus). By contrast, relevant mean activities of cellulolytic and hemicellulolytic Enzymes were found to be present in almost any tree species. The measured fungal biomass correlated positively with the content of nitrogen and the fungal community structure, but was negatively correlated with the organic extractives and the determined fungal species richness. Furthermore, the differences in the fungal species community structure of different tree species as well as in sapwood and heartwood were clarified. In general, there were significant differences in the composition of the fungal communities among the 13 tree species, but no significant difference was observed between sapwood and heartwood. Thus, it can be assumed that fungal colonization by fungi appears to proceed from sapwood towards heartwood and as the result, significant differences regarding the communities were not detected. In addition to fungal biomass, the pH, organic extractives and the content of lignin positively correlated with the fungal community structure. Altogether, 194 fungal families were found, with Helotiaceae and Polyporaceae being the most common ones. The fungus Ascocoryne sarcoides of the ascomycetous family Helotiaceae dominated in Betula and Pinus as well as in the heartwood of Fagus and Fraxinus. The second most common species, Bjerkandera adusta of the basidiomycetous family Meruliaceae, generally dominated the deadwood samples in this work. Furthermore, in some cases, positive correlations were found between the molecular fungal community structure and some enzyme activities (e.g. Lac, MnP). The sequence abundances of white-rot fungi and the Meruliaceae showed significant positive correlations with the activity of MnP. The frequent occurrence of white-rot fungi as well as the simultaneous presence of oxidative enzyme activities and characteristic molecular mass distributions of the water-soluble lignin fragments proved the fundamental importance of peroxidases for the decomposition of deadwood, particularly with respect to lignin degradation. A direct dependency of oxidative enzyme activities from metals was only discontinuously ascertained, since just the activity of Lac correlated positively with the content of copper.
Finally, the genome of the abundant (in the Hainich samples) ascomycetous species Coniochaeta (Lecythophora) hoffmannii was sequenced and analyzed. Since fungi of the family Coniochaetaceae are ubiquitously found in deadwood and on the other hand, merely little is known on their biology, sequencing of the genome should provide information about the putative enzymes/genes involved in wood degradation. The analysis of the genome of C. hoffmannii identified 629 potential enzymes and associated proteins/ modules (CAZymes, carbohydrate-active enzymes), including 74 from the CBM protein family (carbohydratebinding modules). However, true ligninolytic peroxidases (MnP, LiP or VP) were not found.:Zusammenfassung II
Abstract V
Inhaltsverzeichnis IX
Abkürzungsverzeichnis XII
1 Einleitung 1
1.1 Entstehung und Vorkommen von Totholz 4
1.2 Bedeutung von Totholz 7
1.3 Biodiversität im Totholz 11
1.4 Anatomie und chemischer Aufbau des Holzes 15
1.4.1 Die Holzstruktur 15
1.4.2 Die pflanzlichen Zellwandkomponenten und der Lignocellulose-Komplex 17
1.5 Holzzersetzende Pilze und ihre ökophysiologische Einteilung 23
1.6 Enzymatik des pilzlichen Totholzabbaus 27
1.6.1 Enzymatische Hydrolyse der Polysaccharide im Holz 28
1.6.2 Abbau und Modifizierung des Lignins durch oxidative Enzyme 30
1.7 Stand der Totholz–Forschung in den Deutschen Biodiversitäts-Exploratorien .34
2 Zielstellungen 39
3 Material und Methoden 42
3.1 Materialien 42
3.1.1 Untersuchungen am natürlichen Totholz 42
3.1.1.1 Untersuchungsgebiet Hainich-Dün 42
3.1.1.2 Plot-Design und Beprobung der Stämme auf den VIP-Flächen 44
3.2 Methoden 45
3.2.1 Aufbereitung der Totholzproben 45
3.2.2 Photometrische Bestimmung enzymatischer Aktivitäten 46
3.2.2.1 Oxidative Enzymaktivitäten 46
3.2.2.2 Aktivitäten der Endo-1,4-β-Cellulase und Endo-1,4-β-Xylanase 48
3.2.3 HPLC-basierte Methoden zur Bestimmung enzymatischer Aktivitäten 49
3.2.3.1 Bestimmungen hydrolytischer Aktivitäten mittels HPLC-DAD 49
3.2.3.2 Untersuchung der wasserlöslichen Lignin-Fragmente mittels HPSEC .52
3.2.3.3 Bestimmung der pilzlichen Biomasse 53
3.2.4 Bestimmung der physikalischen und chemischen Holzparameter 54
3.2.4.1 Organische Extraktive 54
3.2.4.2 KLASON-Lignin und säurelösliches Lignin 55
3.2.4.3 Bioverfügbare Metalle 56
3.2.4.4 Ermittlung des Kohlenstoff- und Stickstoffgehalts 56
3.2.5 Bestimmung der molekularen pilzlichen Diversität im Totholz 57
3.2.6 Analyse der Genome ausgewählter holzzersetzender Pilze 59
3.3 Statistiken 60
4 Ergebnisse 62
4.1 Enzymatische Aktivitäten in den 13 Baumarten 62
4.1.1 Oxidative Enzyme 63
4.1.2 Hydrolytische Enzyme 65
4.2 Unterschiede in Totholzvariablen und Elementen in den verschiedenen Baumarten 68
4.2.1 Totholzvariablen 68
4.2.2 Nährstoffgehalte und Elemente 74
4.2.3 Korrelationen zwischen den ligninolytischen Enzymaktivitäten und
verschiedenen Totholzvariablen 79
4.3 Die Struktur der pilzlichen Gemeinschaft und die Artenzahl 80
4.3.1 Die Struktur der pilzlichen Artengemeinschaft 81
4.3.2 Ökologie der gefundenen Pilzarten 88
4.3.3 Pilzliche Artenzahl 89
4.3.4 Korrelationen zwischen Pilzgemeinschaft, Enzymaktivitäten und physikalisch-chemischen Parametern 91
4.3.5 Korrelationen der Pilzfamilien und Ökotypen mit den Enzymaktivitäten 96
4.4 Genomanalyse von Coniochaeta (Lecythophora) hoffmanii 97
5 Diskussion 100
5.1 Allgemeine Unterschiede zwischen den Baumarten 100
5.1.1 Totholzvariablen, Nährstoffe und bioverfügbare Elemente 100
5.1.2 Die lignocellulolytischen Enzymaktivitäten 106
5.1.2.1 Lignin-modifizierende Enzyme (LME) 106
5.1.2.2 Cellulolytische und hemicellulolytische Enzyme 113
5.2 Die pilzliche Artengemeinschaft 119
5.2.1 Dominierende Pilzfamilien, Pilzarten und ökophysiologische Pilzgruppen 122
5.2.2 Zusammenhänge zwischen der pilzlichen Diversität und den abiotischen sowie
biotischen Variablen des Totholzes 127
5.2.2.1 Zusammenspiel der molekularen Pilzgemeinschaft mit Totholzparametern
und Enzymaktivitäten 127
5.2.2.2 Die Variabilität der molekularen Artenzahl und der Totholzparameter 131
5.2.2.3 Unterschiede zwischen den ökophysiologischen Pilzgruppen 132
5.2.2.4 Zusammenhänge zwischen ausgewählten Pilzfamilien und den Enzym-
Aktivitäten 133
6 Ausblick 136
Literaturverzeichnis 138
Anhang 172
Publikationen 178
Danksagung 215
Eidesstattliche Erklärung 217
|
5 |
Die Rolle oxidativer Pilzenzyme für die Totholzzersetzung und die Zersetzungsdynamik von Fagus sylvatica, Picea abies und Pinus sylvestrisArnstadt, Tobias 05 May 2017 (has links)
In Waldökosystemen ist Totholz von zentraler Bedeutung, indem es zahlreichen Organismen einen Lebensraum bietet oder als Substrat dient, Bestandteil des Kohlenstoff- und Nährstoffkreislaufs ist sowie als ein wichtiges strukturelles Element fungiert. Für seine Zersetzung ist die Überwindung der Ligninbarriere von besonderer Bedeutung. Dazu sind lediglich saprobionte Pilze aus den Phyla der Basidiomycota und Ascomycota in der Lage, die verschiedene Strategien – die Fäuletypen – entwickelt haben, um Lignin abzubauen oder zu modifizieren und somit Zugang zu den vom Lignin inkrustierten Polysachariden (Zellulose und Hemizellulosen) zu erhalten. Eine besondere Rolle spielen dabei Weißfäulepilze, die mit ihren extrazellulären oxidativen Enzymen, wie Laccasen und verschiedenen Peroxidasen, Lignin komplett bis zum Kohlendioxid (CO2) mineralisieren. Trotz der Bedeutung des Ligninabbaus für die Totholzzersetzung sind extrazelluläre oxidative Enzyme im natürlichen Totholz kaum erforscht.
Ziel dieser Arbeit war es, die Rolle der oxidativen Enzyme für die Totholzzersetzung unter Realbedingungen zu verifizieren, ihre räumlichen und zeitlichen Muster zu beschreiben und ihre Abhängigkeiten von verschiedenen Totholzvariablen sowie der pilzlichen Artengemeinschaft in und auf Totholz zu ermitteln. Weiter wurde die Veränderung der Totholzvariablen über den Zersetzungsprozess für unterschiedliche Baumarten vergleichend beschrieben und der Einfluss der Waldbewirtschaftung auf den Prozess untersucht.
Dazu wurden 197 natürliche Totholzstämme (coarse woody debris, CWD) von Fagus sylvatica (Rotbuche), Picea abies (Gemeine Fichte) und Pinus sylvestris (Gemeine Kiefer) in unterschiedlich stark bewirtschafteten Wäldern in Deutschland untersucht. Insgesamt wurden 735 Proben genommen und darin die Aktivität von Laccase (Lacc), Genereller Peroxidase (GenP) und Mangan-Peroxidase (MnP) gemessen. Weiterhin wurden Variablen wie Dichte, Wassergehalt, pH-Wert, wasserlösliche Ligninfragmente, die Gehalte an Lignin und Extraktiven sowie an Nährstoffen und Metallen (N, Al, Ca, Cu, K, Mg, Mn und Zn) ermittelt. Die pilzliche Artengemeinschaft wurde anhand genetischer Fingerprints (F-ARISA) und mittels Fruchtkörperkartierung erfasst.
In 79 % der untersuchten Totholzproben wurden oxidative Enzymaktivitäten festgestellt. Sie waren hoch variabel über den Zersetzungsverlauf sowie in Bezug auf die Probenahmepositionen innerhalb der einzelnen Stämme. Generell waren die Aktivitäten im F.-sylvatica-Totholz höher als im Koniferentotholz. Lineare und logistische Modelle zeigten, dass die pilzliche Artengemeinschaft, gefollgt von den wasserlöslichen Ligninfragmenten, die wichtigste Einflussgröße hinsichtlich der oxidativen Enzyme war. Ein saurer pH-Wert unterstützte die Funktion von Lacc und MnP; Mangan, Eisen und Kupfer waren in ausreichenden Konzentrationen vorhanden, um die Funktion und Bildung der Enzyme zu gewährleisten. Die holzabbauenden Pilze erwiesen sich als optimal an das niedrige Stickstoffangebot im Totholz angepasst, sodass ein erhöhter Stickstoffeintrag über zwei Jahre die oxidativen Enzymaktivitäten nicht weiter beeinflusste.
Der pH-Wert sowie die Gehalte an Lignin, Extraktiven und Nährstoffen waren im Vergleich der drei Baumarten signifikant verschieden, obwohl die zeitlichen Veränderungen der Variablen über den Zersetzungsprozess vergleichbar waren. Die Anzahl operativer taxonomischer Einheiten (OTUs ~ molekulare Artenzahl) nahm im Verlauf der Holzzersetzung zu, während die Zahl fruktifizierender Arten für mittlere Zersetzungsgrade am höchsten war. Beide Artenzahlen nahmen zusammen mit dem Stammvolumen zu. Die Weißfäulepilze dominierten über den gesamten Zersetzungsprozess die fruchtkörperbasierte Artenzahl aller drei Baumarten, was mit dem Vorhandensein oxidativer Enzymaktivitäten einhergeht. Generell nahmen der massebezogene Gehalt des Lignins, der Extraktive und der Nährstoffe über die Zersetzung zu, während der volumenbezogene Gehalt abnahm. Der pH-Wert im Holz aller drei Baumarten sank kontinuierlich im Verlauf der Zersetzung. Eine Erhöhung der Waldbewirtschaftungsintensität hatte einen negativen Effekt auf das Stammvolumen und darüber vermittelt auf die Zahl fruktifizierender Pilzarten, jedoch kaum auf andere untersuchte Totholzvariablen.
Aufgrund des häufigen Vorkommens von Weißfäulepilzen, der gleichzeitigen Präsenz oxidativer Enzymaktivitäten und des substanziellen Ligninabbaus kann auf eine fundamentale Bedeutung von Laccasen und Peroxidasen für die Zersetzung des Totholzes geschlossen werden. Nicht zuletzt die charakteristische Molekularmassenverteilung der wasserlöslichen Ligninfragmente deutete darauf hin, dass die Mn-oxidierenden Peroxidasen (MnPs) die dominierenden oxidativen Enzyme des Ligninabbaus sind. Das hoch variable Muster der oxidativen Enzymaktivitäten ist jedoch das Resultat eines komplexen Zusammenspiels der Holzeigenschaften und der pilzlichen Artengemeinschaft. Die dabei bestehenden funktionellen Abhängigkeiten müssen weiter im Detail in zukünftigen Studien analysiert und aufgeklärt werden.:Zusammenfassung I
Abstract III
Inhaltsverzeichnis V
Abkürzungsverzeichnis VIII
1 Einleitung 1
1.1 Totholz als Bestandteil von Waldökosystemen 1
1.1.1 Vorkommen von Totholz 1
1.1.2 Klassifizierung von Totholz 1
1.1.3 Entstehung von Totholz 2
1.1.4 Totholz und Biodiversität 3
1.1.5 Totholz in Stoffkreisläufen 8
1.1.6 Totholz als wichtiges Strukturelement 9
1.2 Holzaufbau 10
1.2.1 Grundsätzlicher Aufbau von Holz 10
1.2.2 Der Lignozellulose-Komplex 14
1.3 Saprobionte Pilze als Spezialisten zur Überwindung der Ligninbarriere 18
1.3.1 Weißfäulepilze 18
1.3.2 Braunfäulepilze 20
1.3.3 Moderfäulepilze 22
1.4 Enzymatischer Ligninabbau 23
1.4.1 Laccase 23
1.4.2 Peroxidasen 26
1.5 Totholz - Stand der Forschung 33
1.5.1 Totholzabbau in Europa 33
1.5.2 Totholz und Waldbewirtschaftung 34
1.5.3 Abbauprozesse 34
1.5.4 Oxidative Enzyme im Totholz 36
2 Zielstellung der Arbeit 39
3 Methoden 43
3.1 Untersuchung von natürlichem Totholz auf den VIP-Flächen 43
3.1.1 Untersuchungsgebiet 43
3.1.2 Probenahme 47
3.1.3 Aufbereitung der Proben für die enzymatischen Messungen 49
3.1.4 Aktivitäten oxidativer Enzyme 50
3.1.5 Physikochemische Variablen der Totholzproben 52
3.1.6 Artenzusammensetzung der Pilze auf und im Totholz 54
3.1.7 Statistik 56
3.2 Erfassung der kleinräumigen Verteilung von Oxidoreduktasen in einem Totholzfragment 63
3.2.1 Probenahme 63
3.2.2 Untersuchung der Proben 65
3.2.3 Statistische Auswertung 66
3.3 Stickstoffexperiment 66
3.3.1 Experimentaufbau 66
3.3.2 Probenahme 68
3.3.3 Aufbereitung der Proben für die enzymatischen Messungen 69
3.3.4 Enzymatische Untersuchungen 69
3.3.5 Untersuchung mit markiertem Stickstoff 74
3.3.6 Statistische Analyse 74
3.4 Optimierung der organischen Extraktion in Vorbereitung der Ligninbestimmung 75
3.4.1 Methodisches Vorgehen 76
3.4.2 Ergebnisse zur Methodenentwicklung 78
3.4.3 Bewertung der Methodenentwicklung 80
4 Ergebnisse 83
4.1 Natürliches Totholz auf den VIP-Flächen 83
4.1.1 Totholzvariablen und Ihre Unterschiede zwischen den Baumarten 83
4.1.2 Einfluss der Waldbewirtschaftung auf die Variablen des Totholzabbaus 91
4.1.3 Veränderungen des Totholzes während der Zersetzung 92
4.1.4 Abhängigkeit der oxidativen Enzymaktivitäten von den physikochemischen Eigenschaften und den Pilzarten (OTUs) 99
4.1.5 Kleinräumige Verteilungsmuster der oxidativen Enzymaktivitäten in den Totholzstämmen 105
4.2 Kleinräumige Muster der oxidativen Enzymaktivitäten in einem einzelnen Totholzfragment 106
4.3 Stickstoffexperiment 111
5 Diskussion 115
5.1 Unterschiede im Zersetzungsprozess zwischen den Baumarten 115
5.2 Oxidative Enzymaktivitäten im Totholz 119
5.2.1 Bedeutung von Lacc, GenP und MnP für die Ligninmodifikation 119
5.2.2 Variabilität der Lacc-, GenP- und MnP-Aktivitäten 121
5.2.3 Kleinräumige Muster der Lacc-, GenP und MnP-Aktivitäten 122
5.2.4 Dynamik der oxidativen Enzymaktivitäten im Verlauf des Zersetzungsprozesses 123
5.2.5 Zusammenhänge zwischen den oxidativen Enzymaktivitäten und den Totholzvariablen 125
5.3 Veränderung des Totholzes über den Zersetzungsprozess 135
5.3.1 Die Artengemeinschaft 136
5.3.2 Die Holzbestandteile und der pH-Wert 138
5.3.3 Die Nährstoffe 139
5.4 Einfluss der Waldbewirtschaftung auf Variablen des Totholzabbaus 141
6 Ausblick 145
7 Thesen 151
8 Literaturverzeichnis 153
Anhang 169
A Charakteristik der Untersuchungsflächen 169
B NMDS-Ordination der pilzlichen Artengemeinschaft 172
C Daten der Totholzstämme 175
D Daten zu den Proben 177
E Daten zur Modellierung der Enzymaktivitäten und der Wahrscheinlichkeit, diese zu detektieren 178
F Daten zur Untersuchung des einzelnen F.-sylvatica-Totholzfragments 189
G Detailabbildungen zur Zersetzungsdynamik 192
H Semivariogrammdaten oxidativer Enzyme im Totholz der VIP-Flächen 195
I Km-Werte von Mangan-Peroxidasen (MnP) für Mangan(II)-Ionen (Mn2+) aus der Literatur 196
J Zuordnung der Fäuletypen zu den Pilzarten 198
K Publikationen 208
L Danksagung 251
M Rechtliche Erklärung 253 / In forest ecosystems, deadwood is an important component that provides habitat and substrate for numerous organisms, contributes to the carbon and nutrient cycle as well as serves as a structural element. Overcoming the lignin barrier is a key process in deadwood degradation. Only specialized saprotrophic fungi of the phyla Basidiomycota and Ascomycota developed different strategies – the rot types – to degrade lignin or to modify it in way, which allows them to get access to the polysaccharides (cellulose and hemicelluloses) that are incrusted within the lignocellulosic complex. In this context, basidiomycetous white rot fungi secreting oxidative enzymes (especially laccases and peroxidases) are of particular importance, since they are the only organisms that are able to substantially mineralize lignin to carbon dioxide (CO2). Although lignin degradation is such an important process for deadwood degradation, oxidative enzyme activities have been only poorly studied under natural conditions in deadwood.
The aim of this work was to verify the importance of oxidative enzymes for deadwood degradation in the field, to describe their temporal and spatial patterns of occurrence and to identify dependencies from deadwood variables as well as from the fungal community within and on deadwood. Furthermore, the changes of different deadwood variables were studied over the whole period of degradation and compared among three tree species. Last but not least, the influence of forest management intensity on the process of deadwood degradation was evaluated.
Therefor, 197 logs of naturally occurring deadwood (coarse woody debris, CWD) of Fagus sylvatica (European beech), Picea abies (Norway spruce) and Pinus sylvestris (Scots pine) were monitored and sampled in forests with different management regimes across three regions in Germany. A total of 735 samples were taken from the logs and analyzed regarding activities of laccase (Lacc), general peroxidase (GenP) and manganese peroxidase (MnP). Wood density, water content, content of lignin and extractives as well as of nutrients and metals (N, Al, Ca, Cu, K, Mg, Mn und Zn) were determined in the samples, too. The fungal community was assessed based on sporocarps (fruiting bodies) and molecular fingerprints (F-ARISA).
Oxidative enzyme activities were present in 79 % of all samples. The activities were found to be highly variable both regarding the time course of degradation and their distribution within the logs. Activities were generally higher in wood samples of F. sylvatica than in samples of conifers. Linear and logistic models revealed that the fungal community structure was the most important determinant for oxidative enzyme activities in the samples, followed by the amount of water-soluble lignin fragments. Moreover, the prevalent acidic pH determined in deadwood was suitable to facilitate the function of laccase and peroxidases. Concentrations of metals (manganese, copper, iron) were sufficient to ensure synthesis and functioning of the enzymes. Deadwood-dwelling fungi turned out to be well adapted to low nitrogen concentrations and thus, an elevated nitrogen deposition over a period of two years did not affect the oxidative enzyme activities.
The pH as well as the content of lignin, extractives and nutrients significantly differed among the tree species; however, their trend over the course of degradation was rather similar. Molecular species richness (determined by F-ARISA as OTUs) increased over the whole course of degradation, while the number of fruiting species was highest in the intermediate stage of degradation. Both types of species richness increased with increasing volume of the CWD logs. Over the entire degradation period, white rot fungi – based on the identification of sporocarps – were the most abundant group of wood rot fungi in and on all three tree species. This corresponds well with the overall presence of oxidative enzyme activities. During degradation, the mass-related content of lignin, extractives and nutrients frequently increased, although the volume-related content decreased. The pH of all three tree species decreased in deadwood over the whole period of degradation. Higher forest management intensity had a negative effect on the log volume of deadwood and in consequence on fungal species richness (fruiting bodies), but hardly to other analyzed variables.
Based on the widespread occurrence of white rot fungi, the concomitant presence of oxidative enzyme activities as well as the substantial loss of lignin, it can be concluded that laccases and peroxidases are highly relevant for deadwood decomposition. Not least, the detected characteristic molecular size distribution of water-soluble lignin fragments points to a key role of Mn oxidizing peroxidases (MnPs) in enzymatic lignin degradation. The variable patterns of oxidative enzymes observed in wood samples is therefore the result of a complex array of wood variables and the fungal community structure, which will have to be resolved in more detail in future studies.:Zusammenfassung I
Abstract III
Inhaltsverzeichnis V
Abkürzungsverzeichnis VIII
1 Einleitung 1
1.1 Totholz als Bestandteil von Waldökosystemen 1
1.1.1 Vorkommen von Totholz 1
1.1.2 Klassifizierung von Totholz 1
1.1.3 Entstehung von Totholz 2
1.1.4 Totholz und Biodiversität 3
1.1.5 Totholz in Stoffkreisläufen 8
1.1.6 Totholz als wichtiges Strukturelement 9
1.2 Holzaufbau 10
1.2.1 Grundsätzlicher Aufbau von Holz 10
1.2.2 Der Lignozellulose-Komplex 14
1.3 Saprobionte Pilze als Spezialisten zur Überwindung der Ligninbarriere 18
1.3.1 Weißfäulepilze 18
1.3.2 Braunfäulepilze 20
1.3.3 Moderfäulepilze 22
1.4 Enzymatischer Ligninabbau 23
1.4.1 Laccase 23
1.4.2 Peroxidasen 26
1.5 Totholz - Stand der Forschung 33
1.5.1 Totholzabbau in Europa 33
1.5.2 Totholz und Waldbewirtschaftung 34
1.5.3 Abbauprozesse 34
1.5.4 Oxidative Enzyme im Totholz 36
2 Zielstellung der Arbeit 39
3 Methoden 43
3.1 Untersuchung von natürlichem Totholz auf den VIP-Flächen 43
3.1.1 Untersuchungsgebiet 43
3.1.2 Probenahme 47
3.1.3 Aufbereitung der Proben für die enzymatischen Messungen 49
3.1.4 Aktivitäten oxidativer Enzyme 50
3.1.5 Physikochemische Variablen der Totholzproben 52
3.1.6 Artenzusammensetzung der Pilze auf und im Totholz 54
3.1.7 Statistik 56
3.2 Erfassung der kleinräumigen Verteilung von Oxidoreduktasen in einem Totholzfragment 63
3.2.1 Probenahme 63
3.2.2 Untersuchung der Proben 65
3.2.3 Statistische Auswertung 66
3.3 Stickstoffexperiment 66
3.3.1 Experimentaufbau 66
3.3.2 Probenahme 68
3.3.3 Aufbereitung der Proben für die enzymatischen Messungen 69
3.3.4 Enzymatische Untersuchungen 69
3.3.5 Untersuchung mit markiertem Stickstoff 74
3.3.6 Statistische Analyse 74
3.4 Optimierung der organischen Extraktion in Vorbereitung der Ligninbestimmung 75
3.4.1 Methodisches Vorgehen 76
3.4.2 Ergebnisse zur Methodenentwicklung 78
3.4.3 Bewertung der Methodenentwicklung 80
4 Ergebnisse 83
4.1 Natürliches Totholz auf den VIP-Flächen 83
4.1.1 Totholzvariablen und Ihre Unterschiede zwischen den Baumarten 83
4.1.2 Einfluss der Waldbewirtschaftung auf die Variablen des Totholzabbaus 91
4.1.3 Veränderungen des Totholzes während der Zersetzung 92
4.1.4 Abhängigkeit der oxidativen Enzymaktivitäten von den physikochemischen Eigenschaften und den Pilzarten (OTUs) 99
4.1.5 Kleinräumige Verteilungsmuster der oxidativen Enzymaktivitäten in den Totholzstämmen 105
4.2 Kleinräumige Muster der oxidativen Enzymaktivitäten in einem einzelnen Totholzfragment 106
4.3 Stickstoffexperiment 111
5 Diskussion 115
5.1 Unterschiede im Zersetzungsprozess zwischen den Baumarten 115
5.2 Oxidative Enzymaktivitäten im Totholz 119
5.2.1 Bedeutung von Lacc, GenP und MnP für die Ligninmodifikation 119
5.2.2 Variabilität der Lacc-, GenP- und MnP-Aktivitäten 121
5.2.3 Kleinräumige Muster der Lacc-, GenP und MnP-Aktivitäten 122
5.2.4 Dynamik der oxidativen Enzymaktivitäten im Verlauf des Zersetzungsprozesses 123
5.2.5 Zusammenhänge zwischen den oxidativen Enzymaktivitäten und den Totholzvariablen 125
5.3 Veränderung des Totholzes über den Zersetzungsprozess 135
5.3.1 Die Artengemeinschaft 136
5.3.2 Die Holzbestandteile und der pH-Wert 138
5.3.3 Die Nährstoffe 139
5.4 Einfluss der Waldbewirtschaftung auf Variablen des Totholzabbaus 141
6 Ausblick 145
7 Thesen 151
8 Literaturverzeichnis 153
Anhang 169
A Charakteristik der Untersuchungsflächen 169
B NMDS-Ordination der pilzlichen Artengemeinschaft 172
C Daten der Totholzstämme 175
D Daten zu den Proben 177
E Daten zur Modellierung der Enzymaktivitäten und der Wahrscheinlichkeit, diese zu detektieren 178
F Daten zur Untersuchung des einzelnen F.-sylvatica-Totholzfragments 189
G Detailabbildungen zur Zersetzungsdynamik 192
H Semivariogrammdaten oxidativer Enzyme im Totholz der VIP-Flächen 195
I Km-Werte von Mangan-Peroxidasen (MnP) für Mangan(II)-Ionen (Mn2+) aus der Literatur 196
J Zuordnung der Fäuletypen zu den Pilzarten 198
K Publikationen 208
L Danksagung 251
M Rechtliche Erklärung 253
|
Page generated in 0.0577 seconds