• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deposition and characterisation of copper for high density interconnects

McCusker, Niall January 1999 (has links)
No description available.
2

Obtenção de nanopartículas de níquel suportadas em sílica via pulverização catódica: preparação e atividade catalítica / Nickel nanoparticles supported on silica obtained by magnetron sputtering deposition: preparation and catalytic activity

Rosa, Tiago 14 December 2016 (has links)
O níquel desempenha um papel importante na catálise como uma alternativa ao uso de metais nobres; no entanto, a preparação de nanopartículas de níquel com o tamanho e composição bem controlados não é uma tarefa fácil. O trabalho descrito nessa dissertação compreende a preparação e caracterização de um novo catalisador heterogêneo cotendo nanopartículas de níquel e o estudo da atividade catalítica em reações de hidrogenação em fase gososa e líquida. O catalisador foi preparado por pulverização catódica (magnetron sputtering deposition), que permitiu a deposição de nanopartículas com diâmetro médio de 2,5 ± 0,3 nm sobre um suporte de sílica, sem a utilização de solventes ou estabilizantes. Diferentes tempos de pulverização catódica permitiram a obtenção de catalisadores com diferentes concentrações de metal sobre o suporte. O catalisador preparado foi caracterizado por microscopia eletrônica de transmissão (MET), difração de raios X (DRX), espectroscopia de fotoéletrons excitados por raios X (XPS) e espectroscopia de absorção de raios X (XAS). As análises por técnicas de raios X mostraram que o catalisador oxida parcialmente sua superfície após ser exposto ao ar ambiente. Utilizando XAS, foi possível mostrar que o catalisador como preparado possui 61% de níquel metálico e 39% de níquel óxido. O catalisador exposto ao ar por um ano ainda apresentava 49% de níquel metálico. O desempenho dos catalisadores foi estudado na reação modelo de hidrogenação de cicloexeno, utilizando hidrogênio molecular como agente redutor. Para a hidrogenação em fase líquida, o catalisador não se mostrou ativo nas condições estudadas e não pode ser ativado mesmo após pré-tratamento com hidrogênio molecular. Já na hidrogenação em fase gasosa, o catalisador apresentou atividade catalítica, sendo mais ativo quando submetido a um processo de ativação com fluxo de hidrogênio e aquecimento até 200 ºC. O catalisador perde atividade ao ser utilizado por um longo período ou utilizado em sucessivos ciclos de aquecimento em condições reacionais, mas a atividade pode ser recuperada quando o catalisador é tratado termicamente sob fluxo de hidrogênio. / Nickel plays an important role in catalysis as an affordable alternative for noble metals; however, it is one of the most difficult metal nanoparticles to prepare with well-controlled size and composition. This master thesis comprises the development and characterization of a new heterogeneous catalyst containing nickel nanoparticles and the catalytic studies for hydrogenation reactions in liquid and gas phase. The catalyst was prepared by magnetron sputtering deposition, allowing the deposition of nanoparticles of 2.5 ± 0.3 nm on silica, without using solvents and stabilizers. Different sputtering times allowed the preparation of catalysts with different loading of metal on silica. The catalyst prepared has been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The analysis by X-ray techniques revealed that the catalyst partially oxidize its surface after being exposed to ambient air. By XAS technique, it was possible to show that the catalyst as prepared has 61% of metallic nickel and 39% of nickel oxide. The as prepared catalyst was exposed to air for a year still contains 49% of metallic nickel. The performance of the catalyst was studied in cyclohexene hydrogenation model reaction, using molecular hydrogen as reducing agent. The catalyst was not active for the liquid phase hydrogenation under the studied conditions, and could not be activated by a pre-treatment with hydrogen. In the gas phase hydrogenation, the catalyst showed catalytic activity being more active when submitted to an activation process with hydrogen flow and heating to 200 ºC. The catalyst loses activity when used for a long time on stream or used in consecutive heating cycles under reaction conditions, but the activity can be regenerated when the catalyst is heat-treated under hydrogen flow.
3

Obtenção de nanopartículas de níquel suportadas em sílica via pulverização catódica: preparação e atividade catalítica / Nickel nanoparticles supported on silica obtained by magnetron sputtering deposition: preparation and catalytic activity

Tiago Rosa 14 December 2016 (has links)
O níquel desempenha um papel importante na catálise como uma alternativa ao uso de metais nobres; no entanto, a preparação de nanopartículas de níquel com o tamanho e composição bem controlados não é uma tarefa fácil. O trabalho descrito nessa dissertação compreende a preparação e caracterização de um novo catalisador heterogêneo cotendo nanopartículas de níquel e o estudo da atividade catalítica em reações de hidrogenação em fase gososa e líquida. O catalisador foi preparado por pulverização catódica (magnetron sputtering deposition), que permitiu a deposição de nanopartículas com diâmetro médio de 2,5 ± 0,3 nm sobre um suporte de sílica, sem a utilização de solventes ou estabilizantes. Diferentes tempos de pulverização catódica permitiram a obtenção de catalisadores com diferentes concentrações de metal sobre o suporte. O catalisador preparado foi caracterizado por microscopia eletrônica de transmissão (MET), difração de raios X (DRX), espectroscopia de fotoéletrons excitados por raios X (XPS) e espectroscopia de absorção de raios X (XAS). As análises por técnicas de raios X mostraram que o catalisador oxida parcialmente sua superfície após ser exposto ao ar ambiente. Utilizando XAS, foi possível mostrar que o catalisador como preparado possui 61% de níquel metálico e 39% de níquel óxido. O catalisador exposto ao ar por um ano ainda apresentava 49% de níquel metálico. O desempenho dos catalisadores foi estudado na reação modelo de hidrogenação de cicloexeno, utilizando hidrogênio molecular como agente redutor. Para a hidrogenação em fase líquida, o catalisador não se mostrou ativo nas condições estudadas e não pode ser ativado mesmo após pré-tratamento com hidrogênio molecular. Já na hidrogenação em fase gasosa, o catalisador apresentou atividade catalítica, sendo mais ativo quando submetido a um processo de ativação com fluxo de hidrogênio e aquecimento até 200 ºC. O catalisador perde atividade ao ser utilizado por um longo período ou utilizado em sucessivos ciclos de aquecimento em condições reacionais, mas a atividade pode ser recuperada quando o catalisador é tratado termicamente sob fluxo de hidrogênio. / Nickel plays an important role in catalysis as an affordable alternative for noble metals; however, it is one of the most difficult metal nanoparticles to prepare with well-controlled size and composition. This master thesis comprises the development and characterization of a new heterogeneous catalyst containing nickel nanoparticles and the catalytic studies for hydrogenation reactions in liquid and gas phase. The catalyst was prepared by magnetron sputtering deposition, allowing the deposition of nanoparticles of 2.5 ± 0.3 nm on silica, without using solvents and stabilizers. Different sputtering times allowed the preparation of catalysts with different loading of metal on silica. The catalyst prepared has been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The analysis by X-ray techniques revealed that the catalyst partially oxidize its surface after being exposed to ambient air. By XAS technique, it was possible to show that the catalyst as prepared has 61% of metallic nickel and 39% of nickel oxide. The as prepared catalyst was exposed to air for a year still contains 49% of metallic nickel. The performance of the catalyst was studied in cyclohexene hydrogenation model reaction, using molecular hydrogen as reducing agent. The catalyst was not active for the liquid phase hydrogenation under the studied conditions, and could not be activated by a pre-treatment with hydrogen. In the gas phase hydrogenation, the catalyst showed catalytic activity being more active when submitted to an activation process with hydrogen flow and heating to 200 ºC. The catalyst loses activity when used for a long time on stream or used in consecutive heating cycles under reaction conditions, but the activity can be regenerated when the catalyst is heat-treated under hydrogen flow.
4

Nanoindentation of Annealed and As-Sputtered Thin Films of Nickel Titanium Shape Memory Alloys

Lewis, Matthew Tyson 01 October 2010 (has links)
The bottom-up processing techniques used for making Microelectromechanical systems (MEMS) devices can produce material properties different from bulk processing. The material properties must be evaluated with the process parameters used and for changes in the process parameters. The mechanical properties are needed to design MEMS devices. A material of interest for MEMS devices is nickel titanium (NiTi) shape memory alloy (SMA) because of the high work output (~107 J/m3). This thesis will focus on the fabrication of thin film NiTi by DC magnetron sputtering deposition and testing mechanical properties of the fabricated films by nanoindentation. Thin film NiTi SMA was successfully created by DC magnetron sputtering deposition and high vacuum annealing in the Microfabrication Laboratory at California Polytechnic State University – San Luis Obispo. Characterization of the thin film by nanoindentation produced an elastic modulus of the thin film NiTi SMA with the developed processing parameters was 67.9 GPa with a hardness of 2.1 GPa. The measured thin film NiTi elastic modulus was greater than bulk NiTi of 40 GPa because of the residual stress from the deposition process. The shape memory effect was evaluated at the nanometer scale by measuring the nanoindents before and after thermally inducing a phase transformation. A maximum indentation depth recovery of 58% was measured upon the heat induced martensitic phase transformation. The low recovery was attributed to the high strain of 8% induced by the Berkovich tip. The effects of deposition power on the NiTi as-sputtered film stress, elastic modulus, hardness, and electrical conductivity were evaluated. At the highest sputtering deposition power of 450 Watts, an elastic modulus of 186 GPa with a hardness of 8.3 GPa was measured by nanoindentation. An increase in deposition power increased the residual film compressive stress, elastic modulus, and hardness while the electrical resistivity increased. The mechanisms for the measured properties are discussed in this thesis.
5

Hafnium-doped tantalum oxide high-k gate dielectric films for future CMOS technology

Lu, Jiang 25 April 2007 (has links)
A novel high-k gate dielectric material, i.e., hafnium-doped tantalum oxide (Hf-doped TaOx), has been studied for the application of the future generation metal-oxidesemiconductor field effect transistor (MOSFET). The film's electrical, chemical, and structural properties were investigated experimentally. The incorporation of Hf into TaOx impacted the electrical properties. The doping process improved the effective dielectric constant, reduced the fixed charge density, and increased the dielectric strength. The leakage current density also decreased with the Hf doping concentration. MOS capacitors with sub-2.0 nm equivalent oxide thickness (EOT) have been achieved with the lightly Hf-doped TaOx. The low leakage currents and high dielectric constants of the doped films were explained by their compositions and bond structures. The Hf-doped TaOx film is a potential high-k gate dielectric for future MOS transistors. A 5 àtantalum nitride (TaNx) interface layer has been inserted between the Hf-doped TaOx films and the Si substrate to engineer the high-k/Si interface layer formation and properties. The electrical characterization result shows that the insertion of a 5 àTaNx between the doped TaOx films and the Si substrate decreased the film's leakage current density and improved the effective dielectric constant (keffective) value. The improvement of these dielectric properties can be attributed to the formation of the TaOxNy interfacial layer after high temperature O2 annealing. The main drawback of the TaNx interface layer is the high interface density of states and hysteresis, which needs to be decreased. Advanced metal nitride gate electrodes, e.g., tantalum nitride, molybdenum nitride, and tungsten nitride, were investigated as the gate electrodes for atomic layer deposition (ALD) HfO2 high-k dielectric material. Their physical and electrical properties were affected by the post metallization annealing (PMA) treatment conditions. Work functions of these three gate electrodes are suitable for NMOS applications after 800°C PMA. Metal nitrides can be used as the gate electrode materials for the HfO2 high-k film. The novel high-k gate stack structures studied in this study are promising candidates to replace the traditional poly-Si-SiO2 gate stack structure for the future CMOS technology node.
6

Deposition of size-selected atomic clusters on surfaces

Carroll, Simon James January 1999 (has links)
No description available.
7

Couches minces et dispositifs à haute performance à base de skuttérudite CoSb₃ / High-performance skuerudite CoSb₃ based thin films and devices

Zheng, Zhuanghao 15 October 2018 (has links)
Ce travail porte sur la préparation de couches minces et sur des dispositifs flexibles à base de CoSb₃ performant et à faible coût par pulvérisation cathodique pour des applications thermoélectriques. Dans un premier temps, La pulvérisation cathodique et la co-pulvérisation ainsi que le procédé de traitement thermique ont été étudiés et optimisés pour améliorer la microstructure et surtout les propriétés thermoélectriques de couches minces. Ces deux techniques de dépôt ont donné un facteur de puissance respectivement de 1,47 × 10-4 Wm-1K-2 et de 0,98 × 10-4 Wm-1K-2. Deuxièmement, Ag et Ti ont été utilisés pour doper les couches minces de CoSb3 via un dépôt par pulvérisation magnétron. La microstructure, la morphologie, la composition et les propriétés thermoélectriques des couches minces de CoSb3 dopés ou co-dopeés sont fortement dépendantes de la teneur de dopage. Une amélioration simultanée du coefficient de Seebeck et de la conductivité électrique grâce au dopage par Ag, a été obtenue, indiquant que Ag est un dopant efficace avec un facteur de puissance maximal de 2,97 × 10-4 Wm-1K-2, plusieurs fois celui de l'échantillon non dopé. Des résultats similaires peuvent être obtenus pour des couches minces dopées au Ti, avec une amélioration simultanée du coefficient de Seebeck et de la conductivité électrique. En particulier, la conductivité thermique de la couche mince a été considérablement réduite en contrôlant soigneusement la nanostructure et la teneur en dopage Ti par optimisation du procédé de dépôt, ce qui a entraîné une augmentation de la figure de mérite ZT de 0,15 à 0,90. Troisièmement, des études détaillées sur des couches minces de CoSb₃ co-dopées Ag/(Sn, Ti ou In) ont été réalisées. L'influence de la nature et de la concentration du co-dopant sur les propriétés des couches minces de CoSb₃ a été étudiée. Le coefficient de Seebeck et la conductivité électrique de toutes les couches minces co-dopées sont simultanément augmentés par rapport à la couche mince non dopée. Le facteur de puissance a été ainsi nettement augmentée et une valeur d'environ 0,32 mWm-1K-2 a été obtenue pour des couches minces co-dopées Ag/Sn. Le facteur de puissance maximal pour des couches co-dopées Ag/Ti et Ag/In est également proche d cette valeur. De plus, une faible conductivité thermique a aussi été obtenue pour ces couches co-dopées, en particulier avec le co-dopage Ag/In, conduisant à une valeur ZT beaucoup plus élevée que les autres couches minces. Enfin, un dispositif à base de nano-couches de CoSb₃ a été fabriqué et une structure des électrodes en multicouche a été mise au point afin d'améliorer la stabilité thermique du dispositif à l'air. Une tension de sortie supérieure à 90 mV et une densité de puissance élevée de 0,46 mWcm-2 peuvent être obtenues à partir du dispositif fabriqué. De plus, ce dispositif a également été testé en tant que capteur thermique et il présente une réponse rapide, avec un temps de réaction de quelques centaines de millisecondes avec une grande stabilité. Il a été également démontré la possibilité d'obtenir une tension de sortie relativement élevée d'environ 7 V avec une intensité de courant d'environ 0,35 mA grâce à ces dispositifs thermoélectriques à couches minces. Ces résultats permettent d'envisager des applications réelles, notamment pour alimenter des équipements électroniques/électriques portatifs. / This work was focused on the preparation of low-cost and high performance CoSb₃ thin films by magnetron sputtering deposition, and on the preparation of efficient flexible thin film devices based on CoSb₃ thin films for thermoelectric application. Firstly, two methods, co-sputtering and single target sputtering, for preparing CoSb₃ thin films by using magnetron sputtering deposition were studied and the heat-treatment process was optimized for the improvement of the micro-structure and thermoelectric properties of the films. Thin films prepared by co-sputtering method or using a single alloy target deposition method have a maximum power factor value of 1.47 × 10-4 Wm-1K-2 and 0.98 × 10-4 Wm-1K-2 respectively. Secondly, Ag and Ti were used for doping the CoSb₃ thin films via magnetron sputtering deposition. The microstructure, morphology, composition, and thermoelectric properties of the single doped CoSb₃ films are found to strongly dependent on the doping content. The results demonstrate a simultaneous improvement of the Seebeck coefficient and the electrical conductivity through Ag doping, indicating that Ag is an efficient dopant for CoSb₃ thin film. Maximal power factor value of 2.97×10-4 Wm-1K-2 has been obtained after Ag doping, which is several times of the value for the un-doped sample. Similar results have been obtained from the single Ti doped CoSb₃ thin films. Interestingly, the thermal conductivity of the film has also been dramatically reduced by carefully controlling the nano-structure and Ti doping content, resulting in an enhanced ZT value from 0.15 to 0.90. Thirdly, detailed studies on magnetron sputtering deposition Ag/(Sn, Ti or In) co-doped CoSb3 thin films have been performed. The influence of the co-doped element type and content on the properties of CoSb₃ thin films has been demonstrated. The Seebeck coefficient and the electrical conductivity of all the co-doped thin films have been simultaneously increased comparing to the un-doped thin film, leading to distinctly enhanced power factor. A maximum power factor value of about 0.32 mWm-1K-2 can be obtained from Ag/Sn co-doped thin film, and similar results have been obtained also from Ag/Ti and Ag/In co-doped films. Additionally, lower thermal conductivity has been obtained from the co-doped thin films, especially with the Ag/In co-doping, leading to much higher room temperature ZT value for the co-doped films, compared to the un-doped or Ag-doped thin films. Lastly, CoSb₃ based nano thin film device has been fabricated and a multilayer structure of the electrodes was used in order to improve the thermal stability of the device in air. A relatively high output voltage of above 90 mV and a high power density of 0.46 mWcm-2 can be obtained with this device. Moreover, this device has also been tested as thermal sensor and it exhibits a fast responsivity, with a reaction time of a few hundreds of millisecond, as well as a high stability. It has also been demonstrated the possibility of obtaining relatively high output voltage of about 7 V at a current intensity of about 0.35 mA by connecting several thin film thermoelectric devices. These results are highly encouraging for achieving practical applications such as power supply for portable electronic devices and sensor.
8

Investigação de defeitos e de métodos passivadores da região interfacial SiO2/SiC / Investigation of defects and passivation methods for the SiO2/SiC interfacial region

Pitthan Filho, Eduardo January 2017 (has links)
O carbeto de silício (SiC) é um semicondutor com propriedades adequadas para substituir o silício em dispositivos eletrônicos em aplicações que exijam alta potência, alta frequência e/ou alta temperatura. Além disso, é possível crescer termicamente um filme de dióxido de silício (SiO2) sobre o SiC de maneira análoga ao silício. Porém, esses filmes apresentam maior densidade de defeitos eletricamente ativos na região interfacial SiO2/SiC que no caso do SiO2/Si, o que limita a qualidade dos dispositivos formados. Assim, compreender a origem da degradação elétrica e desenvolver métodos para passivar os defeitos na região interfacial SiO2/SiC são importantes passos para o desenvolvimento da tecnologia do SiC. Buscando uma melhor compreensão da natureza dos defeitos presentes na região interfacial SiO2/SiC, a interação de estruturas SiO2/SiC com vapor d’água enriquecido isotopicamente (D2 18O) e a interação com monóxido de carbono (CO), um dos subprodutos da oxidação térmica do SiC, foram investigadas. Observou-se que a interação com CO gera cargas positivas na estrutura e que a incorporação de deutério proveniente da água é fortemente dependente da rota de formação do filme de SiO2. Sabendo que a incorporação de nitrogênio e de fósforo na região interfacial SiO2/SiC são eficientes métodos para reduzir o número de defeitos eletricamente ativos nessa região, investigou-se a incorporação de nitrogênio em estruturas de SiC através de tratamentos térmicos em amônia enriquecida isotopicamente (15NH3) e desenvolveu-se um novo método de incorporação de fósforo, fazendo sua deposição por pulverização catódica (sputtering) Os métodos de incorporação propostos resultaram em maiores quantidades de nitrogênio e de fósforo na região interfacial SiO2/SiC do que os encontrados na literatura, tornando-os promissores candidatos na passivação elétrica do SiC. Além da caracterização físico-química utilizando diferentes técnicas, também foi feita a caracterização elétrica de capacitores Metal-Óxido-Semicondutor (MOS) testando filmes de SiO2 obtidos por sputtering ou por crescimento térmico. Adicionalmente, desenvolveu-se uma rota de síntese de padrões de 18O mais estáveis ao longo do tempo para serem utilizados em análises por reação nuclear. Também foi proposta uma metodologia de quantificação de fósforo via análise por reação nuclear. Dos resultados obtidos neste doutorado, uma melhor compreensão da natureza e da origem dos defeitos presentes na região interfacial SiO2/SiC foi alcançada. Também obteve-se uma melhor compreensão de como os elementos passivadores nitrogênio e fósforo interagem nessa região. / Silicon carbide (SiC) is a semiconductor with adequate properties to substitute silicon in electronic devices in applications that require high power, high frequency, and/or high temperature. Besides, a silicon dioxide (SiO2) film can be thermally grown on SiC in a similar way to that on Si. However, these films present higher density of electrical defects in the SiO2/SiC interfacial region when compared to the SiO2/Si interface, which limits the quality of the fabricated devices. Thus, it is important to understand the origin of the electrical degradation and to develop methods to passivate the defects in the SiO2/SiC interfacial region in order to develop the SiC technology. Aiming at a better understanding of the nature of defects at the SiO2/SiC interfacial region, the interaction of SiO2/SiC structures with water vapor isotopically enriched (D2 18O) and the interaction with carbon monoxide (CO), one of the SiC thermal oxidation by-products, were investigated. It was observed that the interaction with CO generates positive charges in the structure and that the deuterium incorporation from the water vapor is strongly dependent on the formation route of the SiO2 film. Knowing that nitrogen and phosphorous incorporation in the SiO2/SiC interfacial region are efficient methods to reduce the number of electrical defects in this region, the nitrogen incorporation in SiC structures by isotopically enriched ammonia (15NH3) annealings was investigated and a new method to incorporate phosphorous, by sputtering deposition was developed The proposed incorporation methods resulted in higher amounts of nitrogen and phosphorous then those found in literature, making them promising candidates to the electrical passivation of SiC. Besides the physico-chemical characterization using different techniques, the electrical characterization of Metal-Oxide-Semiconductor (MOS) capacitors was also performed, testing SiO2 films obtained by sputtering deposition or thermally grown. Additionally, a route to synthesize 18O standards for nuclear reaction analyses that are more stable over time was developed. Besides, a methodology to quantify phosphorous by nuclear reaction analysis was proposed. From the results obtained in this PhD thesis, a better understanding of the nature and the origin of defects present in the SiO2/SiC interfacial region was obtained, as well as a better understanding on how the passivating elements nitrogen and phosphorous interact in this region.
9

Filmes de SiO2 depositados e crescidos termicamente sobre SiC : caracterização físico-química e elétrica / SiO2 films deposited and thermally grown on SiC: Electrical and physicochemical characterization

Pitthan Filho, Eduardo January 2013 (has links)
O carbeto de silício (SiC) é um semicondutor com propriedades adequadas para substituir o silício em dispositivos eletrônicos em aplicações que exijam alta potência, alta freqüência e/ou temperatura. Além disso, um filme de dióxido de silício (SiO2) pode ser crescido termicamente sobre o SiC de maneira análoga a sobre silício, permitindo que a tecnologia já existente para a fabricação de dispositivos utilizando Si possa ser adaptada para o caso do SiC. No entanto, filmes crescidos termicamente sobre SiC apresentam maior densidade de defeitos eletricamente ativos na região interfacial SiO2/SiC que no SiO2/Si. Assim, compreender a origem e os parâmetros que afetam essa degradação elétrica é um importante passo para a tecnologia do SiC. A primeira parte deste trabalho teve como objetivo compreender o efeito de parâmetros de oxidação (pressão de oxigênio e tempo de oxidação) no crescimento térmico de filmes de dióxido de silício sobre substratos de carbeto de silício. As oxidações foram realizadas em ambiente rico em 18O2 e a influência na taxa de crescimento térmico dos filmes de Si18O2 e nas espessuras das regiões interfaciais formadas entre o filme dielétrico e o substrato foram investigadas utilizando análises por reação nuclear. Para correlacionar as modificações nas propriedades investigadas com as propriedades elétricas das amostras, estruturas metal-óxidosemicondutor foram fabricadas e levantamento de curvas corrente-voltagem e capacitânciavoltagem foi realizado. Com isso, pretendeu-se melhor compreender a origem da degradação elétrica gerada pela oxidação térmica no SiC. Observou-se que a taxa de crescimento térmico dos filmes de SiO2 depende de um parâmetro dado pelo produto do tempo de oxidação e da pressão de oxigênio, para as condições testadas. O deslocamento da tensão de banda plana com relação ao valor ideal mostrou-se igualmente dependente desse parâmetro, indicando que uma maior degradação elétrica na região interfacial SiO2/SiC ocorrerá conforme o filme fica mais espesso devido ao aumento dos parâmetros investigados. Não observaram-se modificações nas espessuras da região interfacial SiO2/SiC e na tensão de ruptura dielétrica dos filmes de SiO2 atribuídas aos parâmetros de oxidação testados. Na segunda parte deste trabalho, visando minimizar a degradação elétrica da região interfacial SiO2/SiC gerada pela oxidação térmica do SiC, propôs-se crescer termicamente, em uma condição mínima de oxidação, um filme muito fino e estequiométrico de SiO2, monitorado por espectroscopia de fotoelétrons induzidos por raios X. Para formar filmes mais espessos de SiO2 e poder fabricar estruturas MOS, depositaram-se filmes de SiO2 por sputtering. As espessuras e estequiometria dos filmes depositados foram determinadas por espectrometria de retroespalhamento Rutherford com ou sem canalização. As estruturas MOS em que o filme fino de SiO2 foi crescido termicamente antes da deposição apresentaram menor deslocamento da tensão de banda plana com relação ao valor ideal e maior tensão de ruptura dielétrica do que as amostras em que o filme foi apenas crescido termicamente ou apenas depositado, confirmando a minimização da degradação elétrica da região interfacial SiO2/SiC pela rota proposta. O efeito de um tratamento térmico em ambiente inerte de Ar nas estruturas também foi investigado. Observou-se uma degradação elétrica na região interfacial SiO2/SiC devido a esse tratamento. Análises por reação nuclear indicaram que o filme fino crescido termicamente não permaneceu estável durante o tratamento térmico, perdendo oxigênio para o ambiente gasoso e misturando os isótopos de oxigênio do filme crescido termicamente com o do filme depositado. / Silicon carbide (SiC) is a semiconductor with adequate properties to substitute silicon in electronic devices in applications that requires high power, high frequency, and/or high temperature. Besides, a silicon dioxide (SiO2) film can be thermally grown on SiC in a similar way to that on Si, allowing that technology already used to fabricate devices based on Si to be adapted to the SiC case. However, the oxide films thermally grown on SiC present higher density of electrical defects at the SiO2/SiC interfacial region when compared to the SiO2/Si. Thus, the understanding of the origin and what parameters affect the electrical degradation is an important step to the SiC technology. The first part of this work aimed to understand the effect of oxidation parameters (oxygen pressure and oxidation time) in the thermal growth of silicon dioxide films on silicon carbide substrates. The oxidations were performed in an 18O2 rich ambient and the influence on the growth rate of the Si18O2 films and on the interfacial region thickness formed between the dielectric film and the substrate were investigated using nuclear reaction analyses. To correlate the modifications observed in these properties with modifications in the electrical properties, metal-oxide-semiconductors structures were fabricated and current-voltage and capacitancevoltage curves were obtained. The aim was to understand the origin of the electrical degradation due to the thermal oxidation of silicon carbide. It was observed that the growth rate of the Si18O2 films depends on the parameter given by the product of the oxygen pressure and the oxidation time, under the conditions tested. The flatband voltage shift with respect to the ideal value was also influenced by the same parameter, indicating that a larger electrical degradation in the SiO2/SiC interfacial region will occur as the film becomes thicker due to the increase of the values of the investigated parameters. No modifications were observed in the SiO2/SiC interfacial region thickness and in the dielectric breakdown voltage of the SiO2 films that could be attributed to the oxidation parameters tested. In the second part of this work, in order to minimize electrical degradation due to thermal oxidation of silicon carbide, a stoichiometric SiO2 film with minimal thickness was thermally grown, monitored by X-ray photoelectron spectroscopy. To obtain thicker films and to fabricate MOS structures, a SiO2 film was deposited by sputtering. The thicknesses and stoichiometries of the deposited films were determined by Rutherford backscattering spectrometry using or not the channeling geometry. The MOS structures in which a thin film was thermally grown before the deposition presented smaller flatband voltage shift and higher breakdown voltage when compared to SiO2 films only thermally grown or only deposited directly on SiC, confirming that the electrical degradation in the SiO2/SiC interfacial region was minimized using the proposed route. The effect of one thermal treatment in argon in the structures was also investigated. An electrical degradation in the SiO2/4H-SiC interface was observed. Nuclear reaction analyses indicated that the thin film thermally grown was not stable during the annealing, loosing O to the gaseous ambient and mixing O isotopes of the thermally grown film with those of the deposited film.
10

Pulvérisation cathodique assistée par ordinateur

JIANG, Yan Mei 04 December 1992 (has links) (PDF)
La pulvérisation cathodique est l'une des méthodes les plus utilisées pour le dépôt de films minces. Elle présente de nombreux avantages, mais elle est délicate à mettre en ?uvre dans le cas de films minces d'alliages parce qu'il est très difficile d'en contrôler la composition chimique. C'est pour tenter de résoudre ce problème que nous avons conçu et réalisé un équipement de pulvérisation cathodique triode à courant continu ultravide multicible séquentiel assistée par ordinateur. Ce dispositif est capable de fabriquer des couches minces dont la composition chimique est définie à mieux que 0,4 %. Il permet de contrôler la composition chimique au niveau d'une monocouche atomique. Il est constitué de quatre sous-ensembles : le contrôle du plasma, le contrôle du taux de dépôt, le calcul du rendement de pulvérisation cathodique, et enfin le séquençage rapide de la polarisation des cibles. Le taux de dépôt est obtenu par une mesure de la fréquence de résonance d'un quartz de 16 MHz, grâce à une chaîne de comptage reliée à un ordinateur. En utilisant un dispositif de vernier digital, nous avons pu d'une part augmenter la vitesse de lecture du quartz, de manière à évaluer sa dérive en température et à s'en affranchir, d'autre part améliorer la résolution (10 picogrammes par seconde), ce qui nous permet de déceler le 1/1000e de couche atomique en un temps de comptage de 100 millisecondes. Il est ainsi possible de réaliser un ajustement dynamique de la composition chimique d'un film mince pendant le processus de pulvérisation. Cet objectif a pu être réalisé grâce au contrôle par un ordinateur de la durée de polarisation des cibles. Ce dispositif a été utilisé pour la fabrication de films minces bolométriques couvrant une très large gamme de température.

Page generated in 0.1443 seconds