Spelling suggestions: "subject:"St. denis multionational wildlife area"" "subject:"St. denis multionational wildlife área""
1 |
Hydrologic response to spring snowmelt and extreme rainfall events of different landscape elements within a prairie wetland basinLungal, Murray 29 June 2009
Depressions in the prairie pothole region (PPR) are commonly referred to as sloughs and were formed during the most recent glacial retreat, ~10-17 kyrs ago. They are hydrologically isolated, as they are not permanently connected by surface inflow or outflow channels. Extreme thunderstorms are common across the prairies and the hydrologic response of isolated wetlands to intense rainfall events is poorly understood.
The purpose of this study was to compare the response of different landscape/ecological elements of a prairie wetland to snowmelt and extreme rainstorms. Comparisons were completed by investigating the spring snowmelts of 2005 and 2006 and the rainstorm event of June 17 - 18, 2005, in which 103 mm fell at the St. Denis National Wildlife Area (NWA) Saskatchewan, Canada (106°06'W, 52°02'N). The wetland was separated into five landscape positions, the pond center (PC), grassed edge (GE), tree ring (TR), convex upland (CXU), and concave upland (CVU).
Comparison of the rainfall of June 17 18, 2005 with the spring snowmelts of 2005 and 2006 indicates that the hydrologic consequences of these different events are similar. Overland flow, substantial ponding in lowlands, and recharge of the groundwater occur in both cases. Analysis of this intense rainfall has provided evidence that common, intense rainstorms are hydrologically equivalent to the annual spring snowmelt, the major source of water for closed catchments in the PPR.
|
2 |
Hydrologic response to spring snowmelt and extreme rainfall events of different landscape elements within a prairie wetland basinLungal, Murray 29 June 2009 (has links)
Depressions in the prairie pothole region (PPR) are commonly referred to as sloughs and were formed during the most recent glacial retreat, ~10-17 kyrs ago. They are hydrologically isolated, as they are not permanently connected by surface inflow or outflow channels. Extreme thunderstorms are common across the prairies and the hydrologic response of isolated wetlands to intense rainfall events is poorly understood.
The purpose of this study was to compare the response of different landscape/ecological elements of a prairie wetland to snowmelt and extreme rainstorms. Comparisons were completed by investigating the spring snowmelts of 2005 and 2006 and the rainstorm event of June 17 - 18, 2005, in which 103 mm fell at the St. Denis National Wildlife Area (NWA) Saskatchewan, Canada (106°06'W, 52°02'N). The wetland was separated into five landscape positions, the pond center (PC), grassed edge (GE), tree ring (TR), convex upland (CXU), and concave upland (CVU).
Comparison of the rainfall of June 17 18, 2005 with the spring snowmelts of 2005 and 2006 indicates that the hydrologic consequences of these different events are similar. Overland flow, substantial ponding in lowlands, and recharge of the groundwater occur in both cases. Analysis of this intense rainfall has provided evidence that common, intense rainstorms are hydrologically equivalent to the annual spring snowmelt, the major source of water for closed catchments in the PPR.
|
Page generated in 0.1124 seconds