Spelling suggestions: "subject:"stableisotopes"" "subject:"stableisotope""
251 |
Small Mammal Diversity, Rattlesnake Demographics, and Resource Utilization in the Great Basin: Implications for Management and Stable Isotope ProxiesHamilton, Bryan T. 01 April 2018 (has links)
Plant carbon isotopes were used to track assimilation of riparian resources by small mammals. Voles and shrews derived significant portions of their carbon from riparian vegetation. Deer and harvest mice were abundant in riparian habitat but assimilated little riparian vegetation indicating that the riparian corridor provided resources other than food. This is first use of stable carbon isotopes to trace riparian resources into a vertebrate community. Conifer encroachment in sagebrush ecosystems negatively affects many wildlife populations. Conifer removal is recommended across millions of hectares in the Great Basin. However the effects of conifer encroachment and conifer removal are unknown for most wildlife species. We show that the consequences of conifer encroachment, a press impact, far outweigh the pulse impact of sagebrush restoration, on small mammal diversity. Lack of demographic data limit the development of effective management, conservation and recovery goals for rattlesnakes. We used a long-term dataset and capture mark recapture models to quantify demography of four rattlesnake populations. Mean population growth indicated an overall stable population across the study, with two of the four sites declining. Survival overwhelmingly contributed to population growth relative to recruitment. No small mammals drank stream water even during periods of environmentally high water stress and high aridity, extension of the linear regression equation for small mammal body water towards the meteoric waterline, captures stream water, the weighted mean average for regional meteoric waters. Similar regression of fossilized small mammal tissues would also capture local meteoric waters. Even in arid regions, small mammal fossils are a suitable proxy for climate reconstructions. In the Great Basin, snowmelt overwhelmingly contributes to local precipitation, plant production, and stream flows. Snowmelt supports riparian and upland plants, and small mammals. Rattlesnakes prey primarily on small mammals, indirectly depending on snow melt for survival and reproduction. Climate models and rattlesnake emergence strongly indicate an earlier onset of spring and reduced ratio of snow to rain. Declining snowpack will have major impacts on biodiversity and management such as riparian vegetation, native plant restoration, trophic interactions, and ecological goods and services.
|
252 |
Investigations into isotope biogeochemistry of Zn in coastal areas and mangroves / Investigations de la biogéochimie isotopique du Zn en zones côtières et mangrovesFerreira Araujo, Daniel 12 October 2016 (has links)
Les zones côtières du monde entier sont sous fort pression de contamination anthropique comme conséquence de la concentration de la plupart de la population mondiale et des activités économiques le long des côtes et des estuaires. La menace de contaminant sur les écosystèmes rend primordial le développement d'outils capable de détecter les modifications biogéochimiques en vue d'aider dans la prévention, la gestion, et la prédiction de risques dans les études environnementales. Dans ce but, cette thèse étudie la biogéochimie des isotopes du Zinc (Zn) en vue de développer un outil capable de tracer les sources naturelles et anthropiques, d'identifier les processus biogéochimiques et de permettre à la biosurveillance de la contamination par les métaux dans les zones côtières et les mangroves. A cette fin, les compositions isotopiques du Zn ont été déterminées à plusieurs échantillons naturels prélevés dans la baie de Sepetiba (au sud-est du Brésil), un estuaire lagunaire affecté par une côte industrialisée située près de Rio de Janeiro. Cette baie constitue un laboratoire naturel idéal pour valider le système isotopique du Zn. En effet, cette zone héberge des écosystèmes d'intérêt commercial et écologique -estuaire, mangrove, estran- menacés par la contamination d'une ancienne activité de galvanoplastie, et d'autres sources diffuses. Les échantillons collectés comprennent des carottes de sédiments, des sédiments de la superficie des mangroves, des matériaux particulaires en suspension (SPM), des feuilles provenant d'arbres de mangrove, des tissus de mollusques bivalves (huîtres et moules) et des roches. Minéraux de dépôt de Vazante (Brésil) ont été collecté pour representé matière première utilisée par l'industrie de la galvanoplastie. Tout d'abord, un travail initial de laboratoire a établi une méthode exacte et précise pour les déterminations isotopiques Zn en échantillons naturelles par spectrométrie de masse avec plasma couplé par induction et multicollecteur (MC-ICP-MS). Des analyses spatiales et temporelles des compositions isotopiques du Zn des échantillons de sédiments et de roches s'ajustent bien à un modèle de mélange entre trois principales extrémités : i) les matériaux continentaux charriés par les rivières ; ii) les sources marines ; et iii) une source anthropique majeure associée aux anciens déchets de galvanoplastie jetés dans la baie. Les carottes de sédiment collectées dans la vasière ont montré une haute corrélation entre la composition isotopique du Zn et le facteur d'enrichissement du Zn. Ceci suggère : i) une bonne préservation du registre isotopique des sources naturelle et anthropique, ii) l'absence de fractionnement isotopique significatif durant le transport de sédiments ou durant les réactions diagénétiques pos-dépositions dans le système estuarien. / Coastal areas worldwide are under strong pressure from anthropogenic contamination, as most of the global population and of economic activities are concentrated along the coasts and estuaries. The threaten of contaminant releasing into these ecosystems makes imperative the development of tools capable of detecting biogeochemical changes in order to help prevention, monitoring and prediction of risks in environmental studies. In this way, this thesis investigates the isotope biogeochemistry of Zinc (Zn) in order to develop a tool capable of tracing natural and anthropogenic sources, identifying biogeochemical processes and enabling the biomonitoring of metal contamination in coastal areas and mangroves. To this end, Zn isotopes compositions were determined in several natural samples collected from Sepetiba bay (southeastern Brazil), an estuarine-lagoon impacted by an industrialized coastal area near Rio de Janeiro. This bay constitutes an ideal natural laboratory for evaluating the Zn isotopic system to environmental issues, since it hosts important ecosystems of commercial and ecological interest - estuaries, mangroves and tidal flats - threaten by the metal contamination resultant of old electroplating activity and other anthropogenic diffuse sources. The collected samples include sediment cores, surface mangrove sediments, suspended particulate matter (SPM), leaves of mangrove's trees, tissues of bivalve mollusks (oysters and mussels) and rocks. Ores from Vazante deposit, Brazil were collected to represent the raw material used in the old electroplating industry. Firstly, an initial laboratory work established a method for accurate and precise determinations of Zn isotope compositions in natural samples by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). Spatial and temporal analysis of Zn isotope compositions of sediment and rock samples fits well in a model of mixing between three main end-members: i) continental materials brought via rivers; ii) marine sources; and iii) a major anthropogenic source associated to the old electroplating wastes released into the bay. Sediment cores collected in the mud flat showed high correlation between Zn isotope compositions and Zn enrichment factors, suggesting (i) good preservation of isotopic records of natural and anthropogenic sources and (ii) no significant isotopic fractionation during sediment transport or as a result of diagenetic reactions post-deposition in the estuarine system. The sediment core sampled from a mangrove located in the zone impacted by the old electroplating activity presented levels of Zn up to 4% (dry weight) and preserved the isotopic signatures of electroplating wastes. However, there is evidence that biogeochemical processes triggered by hydrodynamics, bioturbation or rhizosphere processes slightly changed the isotopic signatures in some layers. Calculations based in this mixing model quantified contributions of the major anthropogenic source of Zn, ranging from negligible values in the pre-industrial period to nearly 80% during periods of electroplating activities between the 60's and 90's.
|
253 |
NUMERICAL MODELING AND ISOTOPE TRACERS TO INVESTIGATE KARST BIOGEOCHEMISTRY AND TRANSPORT PROCESSESHusic, Admin 01 January 2018 (has links)
This dissertation investigated the physical and biogeochemical processes affecting the source, fate, and transport of sediment, carbon, and nitrogen within a highly-coupled fluviokarst system. Elemental and isotopic datasets were collected at surface and subsurface locations for both dissolved and particulate contaminant phases, new methodology regarding data collection was presented to the karst research community, an in-cave sediment transport model coupling physical transport with elemental and isotopic mass balances of carbon and nitrogen was formulated, pathway and process control on nitrate leaching from agricultural karst watersheds was assessed, and nitrate mobilization and fractionation were modeled using high frequency storm sampling and long-term low-flow sampling. Data and modeling results indicate that phreatic karst conduits are transport-limited during hydrologic events and experience subsurface deposition of labile, storm-injected sediment which is subsequently decomposed by heterotrophic bacteria. An estimated 30% of the organic carbon associated with sediment is decomposed during transport in the subsurface karst. Concentrations of nitrate in subsurface waters are consistently 50% greater than surface inputs suggesting an additional source of subsurface nitrate. Further modeling of nitrate leaching indicates that quick-flow water sources dilute nitrate concentrations and slow-flow (epikarst and phreatic) sources account for approximately 90% of downstream nitrate delivery. Field sampling of extreme events highlights the physical transport and delayed release of high nitrate concentrations by intermediate karst pathways, which is likely associated with a transition from epikarst to soil drainage during storm recession. Modeling of sediment carbon and nitrogen within the karst SFGL supports the idea that the cave sediment bed experiences hot spots and hot moments of biogeochemical activity. Sediment nitrogen tracing data show a significant increase in δ15NSed at the spring outlet relative to karst inputs indicating the potential for isotope fractionation effects during dissolved N uptake by cave biota. Dissolved nitrogen stable isotopic composition shows a significant downstream decrease in δ15NNO3 within the conduit, likely associated with nitrification. Data and modeling results of sediment, carbon, and nitrogen emphasize the role of multiple pathways, turbulent transport, and in-conduit transformations in controlling contaminant flux from karst watersheds.
|
254 |
Still oxides run deep: studying redox transformations involving Fe and Mn oxides using selective isotope techniquesHandler, Robert Michael 01 July 2009 (has links)
Reactions of aqueous Fe(II) with Fe and Mn oxides influence heavy metal mobility, transformation of trace organics, and important elemental cycles as Fe precipitates form or dissolve, and as electrons move between aqueous and solid phases. Our objective was to characterize reactions of Fe(II) with important metal oxides, using a suite of complementary tools to investigate the extent and underlying mechanisms of Fe(II)-metal oxide redox activity.
Nanoscale materials (1-100 nm) may have fundamentally different surface or electronic properties than larger solids. Goethite was synthesized with primary particle dimensions above or below the nanoscale. Despite large differences in particle surface area, goethite nanorods and microrods had similar net Fe(II) sorption and electron transfer properties. Experimental evidence suggested particle aggregation resulted in particle complexes of a similar size, meaning considerations of available reactive surface area could explain our results.
Kinetics and extent of Fe(II)-Fe(III) redox reactions between aqueous Fe(II) and goethite were examined using a stable isotope tracer approach. Aqueous Fe(II) that had been enriched in 57Fe was mixed with isotopically-normal goethite. Convergence of Fe isotope ratios in aqueous and solid phases to values predicted by complete Fe atom exchange provided evidence that all goethite Fe(III) atoms could eventually react with Fe(II), despite no evidence for complete atom exchange from bulk measurements of the aqueous or solid phase. Fe isotope data at different experimental conditions was combined with theoretical considerations governing electron transfer in goethite to provide evidence for redox-driven atom exchange involving bulk conduction of electrons between spatially distinct Fe(II) sorption and release sites. Procedures for stable Fe isotope tracer studies have been adapted to investigate redox transformations of magnetite solids with different divalent cation content.
Evolution of aqueous Fe(II)-Mn(IV) redox reactions was examined using complementary techniques. After pyrolusite particles were exposed to aqueous Fe(II), aqueous Fe and Mn were analyzed, and X-ray diffraction was utilized with electron microscopy to assess solid phase evolution during continued exposure to Fe(II). Selective use of Fe isotopes during Fe(II) resuspensions allowed us to track chemical changes occurring to one particular Fe addition using 57Fe Mössbauer spectroscopy.
|
255 |
Reconstruction of Late Holocene Precipitation for Central Florida as Derived from Isotopes in SpeleothemsSoto, Limaris R 10 November 2005 (has links)
Little is known about the paleo-precipitation of the Florida Peninsula. In order to better understand Floridas late Holocene climate variability (last 4,200 years), the isotopic composition was analyzed of four speleothems from two caves, in West-Central Florida. Two speleothems were collected from BRC Cave in Hernando County, and two others from Briar Cave in Marion County. This study represents the first speleothem-based paleoclimate records for Florida.
Uranium-series disequilibrium analyses were determined by using thermal ionization mass spectrometry (TIMS) to provide accurate determination of chronology of the deposition of the speleothems. Stable isotopic analyses of oxygen and carbon were performed using stable isotope mass spectrometry, which provided information regarding changing amounts of precipitation (increase in precipitation, decrease in the δ18Oc) and types of vegetation above the cave (increased forest density, decrease in the δ13Cc).
Variations in the speleothems δ18O composition reveal abrupt changes in precipitation amount, fluctuations that appear both regional and hemispheric in nature. Strong similarities between the speleothem δ18O, Lake TulaneδD record (Cross et al. 2003; 2004) and the SE US tree-ring record (surrogate for spring precipitation - Stahle and Cleaveland 1992) suggests a regional atmospheric influence on Floridas precipitation. The major causes of changes in precipitation are proposed to be Atlantic Multi-decadal Oscillation (AMO), El Nino and changes in the relative positions of the Intertropical Convergence Zone (ITCZ)-North Atlantic High (NAH). Comparison between the δ18Oc and surrogates of these influences, show all three have some effect. AMO and El Nino have short-term (decadal) influence and ITCZ-NAH has a long term (centennial) influence. The contributions of these climatic effects have implications for teleconnections involving Floridas climate; the AMO correlation shows higher latitude influence, while El Nino and the ITCZ show tropical influence on subtropical Florida.
|
256 |
Investigating the behavior of alluvial systems, thanks to the classical, isotopic and emerging tracers : case study of the alluvial aquifer of the Allier River (Auvergne, France). / Etude du fonctionnement des hydrosystèmes alluviaux à partir des traceurs classiques, isotopiques et émergents : application à l’aquifère alluvial de l’Allier (Auvergne, France)Mohammed, Nabaz 19 May 2014 (has links)
L’objectif de la thèse vise à déterminer les facteurs et processus qui contrôlent l’origine et la qualité des eaux souterraines alluviales et ainsi à mieux comprendre le fonctionnement et la vulnérabilité des aquifères alluviaux qui occupent une place prééminente dans le paysage hydrogéologique mondial tant pour leur rôle économique - production d'eau potable, développement agricole - que pour leur rôle écologique. Des mesures hydrodynamiques, hydrochimiques (ions majeurs, traces, molécules phytosanitaires et pharmaceutiques) combinées à des déterminations isotopiques (oxygène-18, deuterium, carbone-13) ont ainsi été effectuées sur 19 points incluant puits, piézomètres et eaux de surface, de février 2011 à novembre 2012, afin d’évaluer l’origine et la qualité de l’eau souterraine dans l’aquifère alluvial de la rivière Allier, un des principaux tributaires de la Loire. La zone d’étude, située près de la ville de Clermont-Ferrand (France), joue par ailleurs un rôle socio-économique majeur, la nappe alluviale de l’Allier constituant la principale ressource en eau potable pour une population d’environ 100 000 habitants. D’un point de vue hydrodynamique, l'eau souterraine circule généralement du sud au nord, avec une alimentation naturelle à partir des coteaux adjacents, dans la partie non-pompée de l'aquifère. Dans la zone de pompage, cette circulation naturelle est modifiée par le pompage qui fait pénétrer l’eau de la rivière Allier dans l’aquifère. La recharge de l’aquifère dépend alors de quatre pôles de mélange : pluie, rivière Allier, coteaux adjacents et partie sud, non-pompée, de l’aquifère. Les résultats chimiques et isotopiques obtenus permettent de cartographier la contribution de chaque pôle de mélange. [...] Ces résultats mettent en évidence la vulnérabilité de l’aquifère face aux pollutions. Les parties méridionale et orientale du site sont affectées par des arrivées d’eaux de qualité médiocre démontrant l’importance de la définition d’un périmètre de protection adaptée. Près de l’Allier, une attention particulière doit être portée non seulement aux pollutions ponctuelles qui peuvent se produire sur le cours de la rivière, mais également aux pollutions chroniques liées notamment aux rejets des stations d’épuration pourvoyeurs de polluants tels les molécules pharmaceutiques. Toutes les informations acquises devront être incluses dans les stratégies de gestion d'eau souterraine afin protéger la durabilité de cette ressource de valeur. Les résultats s’appuient sur les investigations menées sur la nappe alluviale de l’Allier, néanmoins la méthodologie utilisée et sa transposition à des systèmes analogues est l’une des perspectives majeures de cette étude. / Hydrodynamic, hydrochemical (major ions, traces, pharmaceuticals and pesticides), and isotopic investigations (oxygen-18 and deuterium) were carried out on 19 points, including boreholes, piezometer, surface water, and springs from February 2011 to November 2012, to assess groundwater quality in the unconfined shallow alluvial aquifer of the Allier River (one of the main tributary of the Loire River). The study area, located near the city of Clermont-Ferrand (France), plays an important socio-economic role as the alluvial aquifer is the major source of drinking water for about 100 000 inhabitants. The objective of the project aims at understanding the functioning and the vulnerability of alluvial aquifers that occupy a pre-eminent position in the hydrogeologic landscape both for their economic role - production of drinking water and agricultural development - and for their ecological role. Moreover, this study also targets at determining the factors and processes controlling shallow groundwater quality and origin. The water circulates from the south, with a natural alimentation from the hills in the non-pumped part of the alluvial aquifer. In the pumping zone, this general behaviour is altered by the pumping that makes the water from the Allier River enter the system in a large proportion. Four end-members have been identified for the recharge of the alluvial groundwater: rainfall, Allier River, surrounding hills’ aquifer and the southern non-pumped part of the alluvial system. Results indicate that, despite the global Ca-HCO3 water type of the groundwater, spatial variations of physico-chemical parameters do exist in the study area. Ionic concentrations increase from the Allier River towards east due either to the increase in the residence time or a mixing with groundwater coming from the aquifer’s borders. Stable isotopes of the water molecule show the same results: boreholes close to the river bank are recharged by the Allier River (depleted values), while boreholes far from the river exhibit isotopic contents close to the values of hills’ spring or to the southern part of the alluvial aquifer, both recharged by local precipitation. One borehole (B65) does not follow this scheme of functioning and presents values attesting of a probable sealing of the Allier River banks. Based on these results, the contribution of each end-member has been calculated and the functioning of the alluvial system determined. According to this general scheme of functioning, origins of pollution (agricultural, urban) have been determined and clues to the protection of such hydrosystems defined.
|
257 |
Dynamics of stream and groundwater exchange using environmental tracersPritchard, Jodie Lee, jodie_pritchard@hotmail.com January 2006 (has links)
Regions of surface water and groundwater exchange are major sites for the transfer and transformation of solutes and nutrients between stream and subsurface environments. Conventional stream and groundwater exchange investigations are limited by methodologies that require intensive field investigations and/or the set-up of expensive infrastructure. These difficulties are exacerbated where hydraulic gradients are very low and stream discharge highly variable. This thesis uses a suite of environmental tracers (Cl-, Rn-222, H-2 & O-18, Sr-87/Sr-86) to characterise the extent of stream and groundwater exchange between a sand bed stream and adjacent alluvial aquifer in a subtropical catchment (the Wollombi Brook) of eastern Australia. The aims were to identify sources and relative contributions of different sources of groundwater to stream discharge and specifically to improve the methodology of using Rn-222 to obtain quantitative estimate of groundwater fluxes.
The sensitivity of the Rn-222 technique for identifying groundwater discharge based on the Rn-222 concentration in stream water was improved via an iterative numerical approach to account for Rn-222 loss from stream water via turbulent gas exchange and radioactive decay. Optimal distances between stream sampling points for defining the magnitude of groundwater discharge to stream flow based on Rn-222 concentrations in stream water is a function of average stream velocity and water depth. The maximum allowable distance between sampling points for determining the magnitude of groundwater discharge to the Wollombi Brook was 2 km. This work showed that groundwater discharged to all reaches of the Wollombi Brook during baseflow and flood recession conditions. Alluvial groundwater contributed less than 30% of water to stream flow in the mid Wollombi Brook catchment.
Dilution of steady-state Rn-222 concentrations measured in transects from the stream to the alluvial sediments showed that significant surface water and groundwater exchange occurs even when gradients between surface water and groundwater are low. Lateral stream water influx to the adjacent alluvial aquifer was more extensive in the lowland areas of the Wollombi Catchment during low flow than flood recession conditions. Extensive stream water influx to the adjacent alluvial aquifer occurs contrary to the net direction of surface water and groundwater flux (as indicated by hydraulic gradients toward the stream channel). The rate of stream and groundwater exchange within the adjacent alluvial aquifer appears to be greatest during baseflow conditions. Fresh alluvial groundwater appeared to provide a buffer against higher salinity regional groundwater discharge to the alluvial aquifer in some reaches of the Wollombi Brook catchment. Pumping of the alluvial aquifer and diversions of surface water may jeopardise the water quality and volume of the alluvial aquifer and induce water flow from the regional aquifer toward the stream, potentially salinising the fresh alluvial aquifer and subsequently the stream.
The change in the Cl- concentration and the variation in slope of the deuterium � oxygen-18 line between consecutive stream sampling points could be used to differentiate between regional and alluvial groundwater discharge to stream flow. Incorporating this information with three-component end-member mixing using [Sr2+] and Sr-87/Sr-86 showed that stream and alluvial groundwater exchange within the stream channel was highest in the lowland floodplains during low flow conditions. The least stream and alluvial groundwater exchange occurred in the low streambed gradient mid reaches of the Wollombi Brook regardless of stream stage. The greatest difference in the degree of stream and alluvial groundwater exchange between high and low stream stages occurred in the lowland floodplains of the Wollombi Brook.
|
258 |
Biogeochemical evidences of human intervention in a shallow lake, Zeekoevlei, South AfricaDas, Supriyo January 2007 (has links)
<p>This thesis describes a multi-parameter biogeochemical investigation in a shallow hyper-eutrophic freshwater coastal lake, Zeekoevlei, in South Africa. The predominance of autochthonous algal-derived organic matter in lake sediments is indicated by low C/N, high H/C ratios and δ13Corganic values. Seepage from a nearby waste water treatment plant, rapid urbanization, raw sewage input and heavily fertilized farming in the catchments have caused enhanced productivity and is reflected by the changes in TOC concentrations, δ15N values, terrestrial to aquatic (n-alkane) ratio (TAR) and low carbon preference index (CPI) values. Eutrophic conditions were initiated in the lake with the start of recreational activities in early 1900s. Construction of dams and pondweed eradication in mid-1900s caused the transformation of the lake towards a hyper-eutrophic water body. Moreover, the aquatic macrophyte n-alkane proxy (Paq) values indicate the slow takeover by floating macrophytes after the eradication of submerged pondweeds in 1951. Low δ15N values and appearance of zeaxanthin indicate initiation of cyanobacterial bloom in the lake following pondweed eradication. Furthermore, the lake experienced intense cyanobacterial bloom after 1983 dredging. Although, cyanobacterial domination has decreased in recent years, hyper-eutrophic condition persists in the lake.</p><p>Chemical weathering process supplies major fraction of trace metals, whereas fertilizers, agricultural wastes, sewage effluents and road runoff constitute the anthropogenic fraction. Low industrialization in the catchments causes low metal pollution in waters. In addition, high pH and metal scavenging by planktons result low dissolved trace metal concentrations. Adsorption by CaCO3 and planktonic assimilation control trace metal and phosphorus (P) sedimentation. Lake sediments have low P retention capacity and P is released from surface sediments by wind-induced resuspension.</p>
|
259 |
Perinatal Energy Substrate Metabolism : <i>Glucose Production and Lipolysis in Pregnant Women and Newborn Infants with Particular Reference to Intrauterine Growth Restriction (IUGR)</i>Diderholm, Barbro January 2005 (has links)
<p>Glucose is the most important fetal nutrient and the production of this substrate increases in the pregnant woman. In the last trimester the increased insulin resistance directs energy substrates to the fetus. Fetal growth is sometimes disturbed, often without an obvious explanation.</p><p>After birth the newborn infant must produce its own glucose, primarily for the brain. Fatty acids from lipolysis are also important energy substrates. Hypoglycaemia can be a problem, occurring frequently in preterm infants and infants born small for gestational age (SGA). In addition, SGA infants are at risk of developing the metabolic syndrome in adulthood. Neonatal medication can influence energy metabolism. One such medication is theophylline, administered in preterm infants to prevent apnoea. </p><p>We investigated energy substrate production in women with normal and IUGR pregnancies, in preterm neonates, before and after theophylline treatment and in newborn SGA infants, using stable isotope-labelled compounds and gas chromatography-mass spectrometry. </p><p>We found that late pregnancy was associated with an almost twofold increase in the rate of lipolysis. This provides substrates for maternal energy metabolism, which may spare glucose for the fetus. Even though glucose production was comparable in the two groups of pregnant women, those with IUGR had a lower rate of lipolysis. A reduced supply of energy substrates could be one factor underlying IUGR. In spite of the insulin resistance of late pregnancy, insulin still had a regulatory role in energy substrate production in the women with normal pregnancies, but not in those with IUGR. </p><p>Although infants born preterm and/or SGA have limited energy stores, we demonstrated that they are capable of both lipolysis and glucose production. Theophylline had no adverse effects on energy substrate production. Data on insulin and IGFBP-1 in the SGA infants indicate that in such infants insulin sensitivity is increased peripherally but reduced in the liver.</p>
|
260 |
Woodland caribou conservation in the Little Smoky: wolf management and the role of bearsRobichaud, Christine B 11 1900 (has links)
Woodland caribou population declines in west-central Alberta precipitated a wolfcontrol. This program to protect caribou could be compromised if (1) there are strong public pressures against helicopter gunning and strychnine poisoning of wolves and/or (2) other predators compensate to kill caribou. Because bears can be important ungulate predators, I used stable isotope techniques to reconstruct
black and grizzly bear diets including contributions of caribou, caribou calves, ants, ungulates (moose, deer and elk), and 3 plant groups. Bears assimilated 2-58% terrestrial protein indicating large variation among individuals. As an alternative to current wolf-control practices, I reviewed spatial and temporal patterns of harvests (1985-2006) on registered traplines. Wolf trapping has increased during the past 2 decades, but on average trappers harvested only 10% of the provincial wolf population, well below culls required to control the
population. Under the registered trapline system it is unlikely that trapping could control wolf abundance. / Ecology
|
Page generated in 0.0304 seconds