Spelling suggestions: "subject:"steel barn"" "subject:"steel bar""
11 |
Résistance des barres en acier à section ouverte soumises à une combinaison d’effort normal, de flexion et de torsion / On the Design of Steel Members with Open Cross-Sections Subject to Combined Axial Force, Bending and TorsionBeyer, André 02 November 2017 (has links)
Des barres en acier à section ouverte sont, dans la majorité des cas, soumises à une combinaison d’effort normal et de flexion bi-axiale. Cependant, en raison de leur utilisation elles peuvent également être soumises à un moment de torsion. Même si les barres à section ouverte peuvent être soumises à des charges de torsion en pratique, l’Eurocode 3, ne définit pas comment la résistance de la barre peut être déterminée dans ces conditions. Ce pourquoi, l’objectif principal de cette thèse est de remplir cette lacune. Pour atteindre cet objectif, le comportement des barres métalliques soumises à une combinaison complexe de charges est étudié par voie théorique, expérimentale et numérique. Tout d’abord, la résistance plastique des barres est étudiée. En cas de torsion, il a été montré que les barres à section ouverte possèdent une réserve plastique importante qui ne peut pas être mise en évidence à l’aide d’une simple analyse élastique. Afin de tenir compte de l’effet bénéfique de la réserve plastique en torsion, une méthode d’analyse simplifiée est développée et validée par des analyses numériques. Ensuite, l’interaction plastique entre les efforts internes est étudiée. Des essais en laboratoire ont été réalisés afin de caractériser l’interaction entre l’effort tranchant et le moment de flexion. L’étude est ensuite étendue à l’aide de simulations numériques sur des cas d’interaction plus complexes incluant notamment des moments de torsion. Les essais accompagnés par l’étude numérique ont permis de mettre au point un modèle de résistance basé sur la méthode « Partial Internal Force Method » développée dans le passé. La dernière partie de la thèse concerne la résistance des barres à l’instabilité. Un modèle de résistance incluant l’effet de l’instabilité élasto-plastique est développé pour les barres métalliques en présence de torsion. Cette méthode est basée sur une extension des formules d’interaction proposées dans l’Eurocode. Afin de franchir certaines limitations liées à cette méthode, un deuxième modèle de résistance est développé pour les barres en I dans le format du « Overall Interaction Concept » / Structural steel members with open cross-section are, in the majority of cases, subject to a combination of axial forces and mono- or bi-axial bending. Nonetheless, owing to specific use they may be subject to torsion as well. Even if torsional loads are of practical interest for steel members of open section, the European standard for the design of steel structures, Eurocode 3, does not contain a generally accepted design method addressing the resistance of these members. Consequently, the main objective of this thesis is to close the lack in the current standard. So as to attain this objective the behaviour of members of open section subject to a complex load combination has been studied theoretically, experimentally and numerically. First, the plastic resistance of steel members has been analysed. It has been shown that members subject to torsion may possess a high plastic system reserve that cannot be predicted by simple elastic analysis. So as to account for the beneficial effect of the plastic reserve, a simplified analysis method has been developed and validated with numerical simulations. After this, the plastic interaction between all internal forces and moments has been studied. Several laboratory tests have been performed to characterise the interaction between bending moments and the shear force. The study is then extended to more complex interaction cases including torsion by means of numerical simulations. The laboratory test and the numerical simulations allowed the development of a precise resistance model based on the “Partial Internal Force Method” developed in the past. The last part of this thesis was dedicated to the member resistance including instability. A resistance model has been developed based on the Eurocode 3 interaction equations. So as to overcome some of the limitations linked to this method, a second design approach is developed based on the “Overall Interaction Concept”
|
12 |
Structural Performance of Reinforced Concrete Beams Subjected to Service Loads Coupled with Corrosion of Flexural ReinforcementAl-Bayti, Abdullah 03 May 2022 (has links)
Corrosion of steel reinforcement has been identified as one of the major problems facing many existing reinforced concrete structures including bridges. The exposure to aggressive environmental conditions such as those with high concentrations of chloride ions due to the use of de-icing salt in cold regions or high concentrations of carbon dioxide due to increased greenhouse gas emissions, accelerate the initiation process of corrosion. As corrosion initiates, the structural performance in terms of load-carrying capacity, ductility, and service life deteriorate over time. Coupling the effect of reinforcement corrosion with service loads may further weaken the structural performance of reinforced concrete bridges due to the presence of transverse load-induced cracks. Accordingly, a research program was conducted to evaluate the structural performance of reinforced concrete beams subjected to coupled effects of service loads and reinforcement corrosion. The research project consisted of combined experimental and numerical investigations.
The experimental phase consisted of tests of nine small-scale beams and six large-scale beams. The beams were designed, constructed, instrumented, and loaded under a four-point load test. The primary test variables were the applied corrosion current density, level of corrosion, and level of sustained loading as percentage of beam ultimate capacity (0% Pu, 40% Pu, and 60% Pu). The corrosion level of steel reinforcement was quantitatively assessed using gravimetric weight measurements and three-dimensional laser scanner technique. Test results indicated that failure of corroded RC beams was brittle due to premature rupture of corroded steel bars, which was attributed to the development of localized corrosion at the sections with flexural cracks in beams. Furthermore, it was found that beams subjected to higher levels of service loads, experienced further reductions in ultimate load capacity and ductility.
In addition, tensile tests were used to evaluate the effect of corrosion on the mechanical performance of steel bars retrieved from the corroded beams. It was found that the tensile strength of corroded steel bars, based on nominal sectional area, was reduced with the increase of corrosion levels. In contrast, the tensile strength, based on minimum sectional area, was not influenced by the non-uniform distribution and localization of corrosion. In fact, there was a slight increase in strength with the increase of corrosion levels.
The numerical phase consisted of finite element analyses of beams using DIANA FE analysis software. A simplified approach was implemented to introduce the damage induced by corrosion into two-dimensional nonlinear FE models, based on the experimental testing of corroded beams and corroded steel bars. The analyses were reasonably accurate in predicting cracking patterns, residual load capacity, residual ductility, and failure modes of corroded beams. Subsequently, the validated model was used to conduct a parametric study on the level of service loads, level of corrosion, strength of concrete, and tensile reinforcement ratio. It was found that the FE model of corroded beams was strongly influenced by the level of service loads, level of corrosion, and tensile reinforcement ratio.
|
13 |
EFFECTS OF HIGH-STRENGTH REINFORCEMENT ON SHEAR-FRICTION WITH DIFFERENT INTERFACE CONDITIONS AND CONCRETE STRENGTHSAhmed Abdulhameed A Alimran (17138692) 13 October 2023 (has links)
<p dir="ltr">Reinforced concrete elements are vulnerable to sliding against each other when shear forces are transmitted between them. Shear-friction is the mechanism by which shear is transferred between concrete surfaces. It develops by aggregate interlock between the concrete interfaces while reinforcement crossing the shear interface or normal force due to external loads contributes to the shear resistance. Current design provisions used in the United States (ACI 318-19, AASHTO LRFD (2020), and the PCI Design Handbook (2017)) include design expression for shear-friction capacity. However, the value of the reinforcement yield strength input into the expressions is limited to a maximum of 60 ksi. Furthermore, the concrete strength is not incorporated into the primary design expressions. These limits cause the potential contribution of high-strength reinforcement and high-strength concrete in shear-friction applications from being considered. Therefore, a research program was developed to investigate the possibility of improving current shear-friction design practice and addressing these current limits.</p><p dir="ltr">Specifically, an experimental program was conducted to evaluate the influence of high-strength reinforcement and high-strength concrete on shear-friction strength. In addition, a statistical analysis was performed using a comprehensive shear-frication database comprised of past tests available in the literature. The experimental program consisted of two phases. Phase I included 24 push-off specimens to study the influence of the yield strength of the interface reinforcement (Grade 60 and Grade 100) and the number and size of interface reinforcing bars (6-No.4 and 4-No. 5 bars) with three different interface conditions (rough, smooth, and shear-key). Phase II included 20 push-off specimens with rough interfaces to investigate the influence of the yield strength of the interface reinforcement (Grade 60 and Grade 100) and concrete strength (target strengths of 4000 psi and 8000 psi). The influence of these two variables was observed over a range of reinforcement ratios (ρ = 0.55%, 0.83%, 1.11%, and 1.38%).</p><p dir="ltr">The test results showed that the overall shear-friction strength was the greatest for rough interface specimens, followed by specimens detailed with shear keys. The smooth interface specimens had the lowest strengths. The results of both phases of the experimental program indicated that the use of high-strength reinforcement did not improve shear-friction capacity.</p><p dir="ltr">Furthermore, the results from the Phase II tests showed that increasing the concrete compressive strength led to increased shear-friction capacity. The test results from the experimental program were analyzed and compared with current design provisions, which demonstrated room for improvement of current design practice.</p><p dir="ltr">Following the experimental program, a comprehensive shear-friction database was analyzed, and multilinear regression was used to create a model to predict shear-friction strength. Factors were then applied to the model to provide acceptable design expressions for shear-friction strength (less than 5% unconservative estimates). The database was used to evaluate the factored model and current design provisions.</p><p dir="ltr">The research outcomes, especially the expressions for shear-friction strength that were developed and that include consideration of the concrete compression strength, along with the shear-friction tests demonstrating the lack of strength gain with the use of Grade 100 reinforcement, provide valuable information for the concrete community to help direct efforts toward improving current shear-friction design practice.</p>
|
Page generated in 0.0755 seconds