• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 21
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 271
  • 64
  • 63
  • 35
  • 33
  • 21
  • 17
  • 16
  • 14
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Stereochemical aspects of 13C-1H coupling and related studies

Schwarcz, Joseph A. January 1974 (has links)
No description available.
192

The synthesis, characterization and stereochemical investigation of Ti(chelato) 2X2 compounds.

Taylor, Kenneth Robert. January 1973 (has links)
No description available.
193

Stereochemical consequences of binding two metals to a single chelating ligand /

McDougall, Mark G. January 1987 (has links)
No description available.
194

The synthesis and resolution of 1-Fluoro-12-Methylbenzo(C)Phenanthrene /

Mentzer, Robert George January 1962 (has links)
No description available.
195

Stereochemistry of transition metal complexes.

Williams, Donald Howard January 1964 (has links)
No description available.
196

Part one: The C-1-C̲ functionalization of a ribofuranose using stabilized ylides ; Part two: The synthesis and reactivity of a carbohydrate enamine /

Clingerman, Michael C. January 1979 (has links)
No description available.
197

Reactivity of Five-Coordinate Intermediates Derived from (Chelate) Tetracarbonylmetal (0) Complexes

Mansour, Saber E. (Saber El-Sayed) 12 1900 (has links)
The reactivity of the [(Phen)Cr(CO)_3] intermediate with phosphines and phosphites (L) has been investigated through ligand-competition studies. This intermediate possesses virtually no ability to discriminate among L. The agreement between reactivity data for the thermal and photochemically-generated intermediates indicates that the same intermediate is produced via each process. Pulsed laser flash photolysis of (n^2-NP)M(CO)_4 (I) (M = Cr, Mo; NP = 1-diethylamino-2-diphenylphosphinoethane) in the absence and presence of P (OPr-i)_3 (L) in 1,2-dichloroethane and chlorobenzene induces unimolecular ring-opening to afford [(n^1-NP)M(CO)_4] (II), in which the bidentate ligand is coordinated through P. Reaction of this intermediate takes place through competitive ring-reclosure and attack at (II) by L to afford (I) and cis-(n^1-NP) (L)M(CO)_4.
198

The use of ephedrine and camphor in asymmetric Diels-Alder reactions.

Kriel, Karina Nicole. January 1997 (has links)
Due to the ever increasing demand for the production of enantiopure drugs and biologically active compounds, the study of asymmetric synthesis and the production of more efficient and cost effective methods of obtaining chiral compounds suggests that there are expanding opportunities for Organic Chemists in this field. Of the broad range of chiral technologies available today for the synthesis of even the most complex multi-centre chiral molecules, the use of chiral auxiliaries continues to remain an important means of obtaining single enantiomer chiral compounds. In this investigation, the imidazolidinone chiral auxiliary (i) was synthesised in order to determine its efficiency and ability to transfer chiral information in Diels-Alder cycloaddition reactions. The products of such reactions are extensively used in the synthesis of natural compounds and pharmaceutical drugs. The synthesis of the imidazolidinone auxiliary is described and mention is made of the fact that the starting materials are cheap and readily available in both enantiomeric forms. The pathway involves only a single reaction that is easily carried out in moderate yields of 60-65%. An adaptation of this auxiliary is the cyclohexyl derivative (ii) which was obtained in a single hydrogenation step of (i) in very high yields (98%). This was compared to the synthesis of the bornane-1O,2-sultam auxiliary (ii). Although the starting materials are also cheap and readily available, there are more reaction steps involved. The synthesis of the imidazolidinone auxiliary proved to be much more simple as well as more time and cost effective. The huge advantage of these auxiliaries is the fact that they are both crystalline which facilitates their purification and that of their derivatives. A possible deficiency of the imidazolidinone auxiliary and the bornane-1O,2-sultam auxiliary was the fact that substitution reaction yields with various a,b-unsaturated acyl chlorides were consistently low (<50%). A major by-product of the acylation reaction was a 'double-adduct' compound that severely affected the reaction yields. This was overcome by employing a new method of acylation developed during the course of this research. It involves the use of DABCO as base with reaction yields between 60 and 98%. In addition to this, reaction conditions were mild and work up procedures simple. The N-acylimidazolidinone auxiliary proved to be extremely successful in Diels-Alder reactions with cyclopentadiene With results equalling those obtained with the well known and highly publicised bornane-10,2-sultam auxiliary. The scope of the N-acylimidazolidinone auxiliary in these reactions included the use of a- and b- substituted dienophiles. Although reactions with a-methyl and b-methyl substituted dienophiles were successful, the auxiliary proved to be unreactive with b-phenyl and b,b-dimethyl substituted dienophiles. The scope of dienes used was extended to include the relatively less reactive isoprene and 2,3-dimethyl-l,3-butadiene. Only the former reacted successfully in Diels-Alder reactions with the N-acylimidazolidinone auxiliary. Crystallinity was imparted to all the products except for the cyclohexyl derivative whose cycloaddition adducts only solidified on standing. The Diels-Alder adducts were successfully cleaved under standard reaction conditions to give products with ee's ranging from 95:5 to 99:1. This investigation also includes the use of the tertiary amine, DABCO, as a catalyst in the Diels-Alder reaction with, specifically, the N-acryloylimidazolidinone chiral auxiliary. Most examples of Diels-Alder reactions involve the use of Lewis acids as a means of improving the rate and selectivity of Diels-Alder reactions. DABCO not only increased the reactivity of the N-acryloylimidazolidinone auxiliary towards cyclopentadiene, but selectivity was also observed. An explanation was put forward as to the mechanism of the reaction as well as to the source of selectivity. Selectivity was much more pronounced in Diels-Alder reactions with the N-acryloylimidazolidinone auxiliary than with the N-acryloylbornane-10,2-sultam auxiliary. It was predicted that DABCO catalysed reactions are amenable to large scale procedures. Due to the fact that the diastereomeric cycloadducts are easily purified by recrystallization or chromatography, and together with the practical advantages and mild reaction conditions this could render the DABCO methodology with the N-acryloylimidazolidinone auxiliary industrially viable. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1997.
199

Intramolecular [2+2] Cycloadditions of Phenoxyketenes and Intermolecular [2+2] Cycloadditions of Aminoketenes

Gu, Yi Qi 05 1900 (has links)
One objective of this study was to explore the intramolecular [2+2] cycloadditions of phenoxyketenes to carbonyl groups with isoflavones and benzofurans as target compounds. The other objective was to investigate the eyeloaddition reactions of rarely studied aminoketenes. The conversion of 2-(carboxyalkoxy)benzils to the corresponding phenoxyketenes leads to an intramolecular [2+2] cycloaddition to ultimately yield isoflavones and/or 3-aroylbenzofurans. The product distributions are dependent upon the substitution pattern in the original benzil acids. The initial cycloaddition products, β-lactones, are isolated in some instances while some β-lactones spontaneously underwent decarboxylation and could not be isolated. The ketene intermediate was demonstrated in the intramolecular reaction of benzil acids or ketoacids with sodium acetate and acetic anhydride. It is suggested that sodium acetate and acetic anhydride could serve as a source for the generation of ketenes directly from certain organic acids. The treatment of ketoacids with acetic anhydride and sodium acetate provides a simpler procedure to prepare benzofurans than going through the acid chloride with subsequent triethylamine dehydrochlorination to give the ketenes. N-Ary1-N-alkylaminoketenes were prepared for the first time from the corresponding glycine derivatives by using p-toluenesulfonyl chloride and triethylamine. These aminoketenes underwent in situ cycloadditions with cyclopentadiene, cycloheptene and cyclooctenes to yield only the endo -bicyclobutanones. The cycloheptene and cyclooctene cycloaddition products underwent dehydrogenation under the reaction conditions to yield bicycloenamines. A mechanism is proposed for this dehydrogenation involving a radical cation of the arylalkylamine. (N-Phenyl-N-methyl) aminomethylketene was also prepared and found to undergo an intramolecular Friedel-Crafts type acylation to yield an indole derivative when prepared by the acetic anhydride, sodium acetate method. The in situ cycloaddition of N-aryl-N-alkyl aminoketenes with various imines was found to form predominately cis-3-amino-2-azetidinones. A mechanism involving a dipolar intermediate is provided whereby the structure of the intermediate is determined by both electronic and steric effects. The stereochemistry of the resulting β-lactams is dependent upon the structure of the dipolar intermediate.
200

Progress towards the total synthesis of chlorothricolide

Hall, Steven Edward January 1982 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE / Includes bibliographical references. / by Steven Edward Hall. / Ph.D.

Page generated in 0.0535 seconds