• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • Tagged with
  • 19
  • 19
  • 12
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cellules souches cancéreuses et résistance thérapeutique du cancer du sein : ciblage des cellules souches cancéreuses mammaires par l'inhibition de la réponse au stress réplicatif / Cancer stem cell and therapeutic resistance in breast cancer : targeting breast cancer stem cell by inhibition of DNA replication response

Azzoni, Violette 14 December 2018 (has links)
Les tumeurs mammaires sont connues pour présenter une grande hétérogénéité intratumorale qui contribue à l’échec thérapeutique et à la progression de la maladie. L’origine de dette hétérogénéité s’explique principalement par l’organisation hiérarchique des tissus tumoraux où plusieurs sous-populations de cellules souches de cancer du sein (bCSC) sont capables de s’auto-renouveler et de maintenir l’architecture oligoclonale de la tumeur. Dans la mesure où les bCSC stimulent la croissance tumorale, résistent aux thérapies conventionnelles et initient le développement des métastases, il est indispensable de développer des thérapies spécifiques ciblant ces cellules. L’élaboration d’une telle stratégie nécessite la compréhension des propriétés moléculaires intrinsèques des bCSC. Pour mieux comprendre leur biologie, nous avons isolé les bCSC de différentes xénogreffes dérivées de tumeurs de patientes et établit leurs profil d’expression génique. Nous avons identifié un programme transcriptionnel pouvant être impliqué dans la réduction du stress réplicatif (SR) des bCSC . Nous avons montré que comparé aux non-bCSC, les bCSC présentent une sur-activation de la recombinaison homologue qui leur permet de réduire leur niveau de SR. Nous avons ensuite montré en réalisant un essai clinique que l’inhibition de cette voie permet de les sensibiliser à des agents génotoxique. Ces travaux identifient le SR comme le talon d’Achille des bCSC et mettent en évidence la recombinaison homologue comme cible potentielle pour sensibiliser les BCSC aux thérapies conventionnelles. / Breast tumors are known to present a major intratumoral heterogeneity that contributes to therapy failure and disease progression. The origin of this cellular heterogeneity is mainly explained by a hierarchical organization of tumor tissues where several subpopulations of self-renewing breast cancer stem cells (bCSCs) sustain the long-term oligoclonal maintenance of the neoplasm. bCSCs drive tumor growth, resist to conventional therapies and initiate metastasis development. Thus, developing bCSC-targeting therapies is becoming a major challenge requiring the understanding of the unique molecular circuitry of bCSC as compared to non-bCSC. To better understand the biology of these cells, we isolated bCSCs from different patient–derived xenografts (PDXs), derived fom breast tumors, and established their gene expression profiles. We identified a bCSC core transcriptional program that may be implicated in the reduction of the replicative stress in CSC: overexpression of genes implicated in dNTP metabolism and homologous recombination (HR). Our results show that HR plays a major role in SR regulation of bCSC and that bCSC are more resistant to RS than non-bCSC, We realized a preclinical assay in PDX and showed that HR inhibition prevent bCSC expansion Cisplatin-induced, suggesting a sensitization of the bCSC to the chemotherapy. Our results identify replication stress as the Achilles’ heel of bCSC and highlights HR as potential targets for anti-bCSC therapy.
12

Identification de nouveaux mécanismes de régulation temporelle des origines de réplication dans les cellules humaines / Identification of new mechanisms of temporal regulation of DNA replication origins in human cells

Guitton-Sert, Laure 11 December 2015 (has links)
La duplication de l'ADN au cours de la phase S est initiée à partir de l'activation de plusieurs dizaines de milliers d'origines de réplication. La mise en place des origines a lieu au cours de la phase G1 sous la forme de complexe de pré-réplication (pré-RC) et leur activation est orchestrée par un programme spatio-temporel. La régulation spatiale détermine les origines qui seront activées et la régulation temporelle, ou timing de réplication, détermine le moment de leur activation. En effet, toutes ces origines ne sont pas activées en même temps durant la phase S : certaines origines seront activées en début de phase S, d'autre en milieu, ou d'autre à la fin. Ce programme est établi en tout début de phase G1, au " point de décision du timing ". C'est un programme très robuste qui signe l'identité d'une cellule, son état de différenciation et le type cellulaire à laquelle elle appartient. Il a aussi été montré qu'il est altéré dans des situations pathologiques, en particulier le cancer, sans qu'on ne comprenne très bien les raisons mécanistiques. De manière générale, les mécanismes moléculaires qui régulent le timing de réplication sont méconnus. Le premier volet de ma thèse a permis l'identification d'un nouveau régulateur du timing de réplication : il s'agit de l'ADN polymérase spécialisée Thêta. Recrutée à la chromatine très tôt en phase G1, elle interagit avec des composants du pré-RC, et régule le recrutement des hélicases réplicatives à la chromatine. Enfin, sa déplétion ou sa surexpression entraîne une modification du timing de réplication à l'échelle du génome. Dans la deuxième partie de ma thèse, j'ai exploré les mécanismes qui régulent ce programme temporel d'activation des origines suite à un stress réplicatif. J'ai identifié un mécanisme de régulation transgénérationnel inédit : la modification du timing de réplication de domaines chromosomiques ayant subi un stress réplicatif au cycle cellulaire précédent. Des cellules-filles issues d'une cellule ayant subi des problèmes de réplication dans des domaines fragiles (riches en AT, et donc potentiellement structurés, et pauvres en origines) présentent un timing plus précoce de l'activation des origines au niveau de ces domaines. Ce nouveau processus biologique d'adaptation est particulièrement intéressant dans un contexte tumoral de haut stress réplicatif chronique car ce pourrait être un moyen pour la cellule tumorale de survivre à son propre stress réplicatif mais aussi aux thérapies antitumorales qui sont nombreuses à cibler la réplication de l'ADN. / DNA duplication in S phase starts from thousands of initiation sites called DNA replication origins. These replication origins are set in G1 as pre-replication complexes (pre-RC) and fired in S phase following a spatio-temporal program of activation. This program determines which origins will be fired and when. Indeed, all the origins are not fired in the same time and we can distinguish early, middle and late replication origins. This temporal regulation is called "replication timing" and is determined at the "timing decision point" (TDP) in early G1. It's a robust program, which participates to the definition of cell identity, in term of differentiation state or cell type. However, the precise molecular mechanisms involved are poorly understood. Defective timing program has been evidenced in pathological contexts, in particular in cancers, but the mechanisms of this deregulation remain unclear. In the first part of my PhD, I contributed to the discovery of a new regulator of the origin timing program: the specialized DNA polymerase Theta (Pol Theta). Pol Theta is loaded onto chromatin in early G1, coimmunoprecipitates with pre-RC components and modulates the recruitment of Mcm helicases at TDP. Moreover, depletion or overexpression of Pol Theta modifies the timing of replication at a fraction of chromosomal domains. The second part of my work aimed at exploring the mechanisms that regulates replication timing after a replicative stress. I identified a totally new transgenerational adaptive mechanism of DNA replication timing regulation: the modification of the timing of origin activation at chromosomal domains that have suffered from a replicative stress during the previous cell cycle. Daughter cells from a cell that has experienced replication stress at particular domains (late replicating domains, AT rich so they can form structured DNA, and poor in origin density) shows advanced origin activation within these regions. This new biological process in response to replicative stress could be of particular interest in the context of cancer since, tumor cells are characterized by high level of intrinsic chronic replicative stress. This new mechanism may favor cancer cell survival despite replication stress, particularly upon treatments with anti-tumor agents that target DNA.
13

Study of the biphasic effect of resveratrol and ATR-inhibitors on cellular fitness

Zeinaty, Alya 08 1900 (has links)
Le resvératrol (RV/RSV) est un composé chimique organique connu pour ses effets anticancéreux mais aussi pour son effet rajeunissant sur les cellules et les organismes. Afin d’étudier le ou les multiples mécanismes à l’origine de ces effets, Y. Benslimane du laboratoire Harrington a étudié l’effet du resvératrol in vitro, à des concentrations de l’ordre de 12,5 μM à 25 μM, sur plusieurs lignées de cellules cancéreuses humaines, notamment NALM6 et JURKAT. Ses recherches ont démontré que le traitement par resvératrol conduit à l’activation de la voie de signalisation ATR/CHK1, qui maintient les cellules mitotiques en phase S afin d'induire la réparation de l'ADN. Dans ces cellules, le resvératrol présente spécifiquement une signature similaire à celle de l’hydroxyurée, un composé anticancéreux connu pour l’induction de stress réplicatif. Cette induction de stress réplicatif semble complémentaire aux mécanismes de la littérature existante, qui présente le resvératrol comme un activateur de sirtuines, une famille d’histones désacétylases hautement conservées entre les espèces et impliquées dans la réparation de l'ADN et la réponse métabolique. Cependant, alors que plusieurs articles démontrent une activation de la sirtuine 1 (SIRT1) comme conséquence notable du traitement par le resvératrol, les études de Benslimane et al. ont démontré quant à elles que le knock-out de la sirtuine 1 dans les cellules NALM6 et Jurkat n’affectait pas le phénotype de stress réplicatif observé. Or les concentrations de resvératrol employées dans l’ensemble de la littérature scientifique varient de 0,5 μM à 100 μM in vitro, laissant supposer une variance dans les conditions expérimentales qui pourrait expliquer la variance de résultats observés. Dans ce contexte, nous avons émis l’hypothèse que l’effet du resvératrol était dépendant de la concentration utilisée, autrement dit, que son effet était biphasé. Plus spécifiquement, dans les cellules NALM6 cancéreuses, nous avons supposé que les stress réplicatif causé par des concentrations élevées (>12,5 μM) de resvératrol pouvait masquer l’activation des sirtuines et spécifiquement celle de la sirtuine 1, tandis que des concentrations plus faibles (<5 μM) 4 permettraient l’observation potentielle de mécanismes parallèles à l’activation de la voie ATR/CHK1. Nous avons également émis l’hypothèse que l’échelle temporelle d’observation jouait un rôle dans la mesure des résultats et leur observabilité. Afin d’examiner nos hypothèses, nous avons dans un premier temps fixé le temps d’observation à 72h après traitement, et évalué l'effet du resvératrol et de l'inhibiteur de l'ATR VE-821 sur la viabilité cellulaire relative dans les cellules NALM6 WT, p53 KO et SIRT1 KO. La lignée p53 KO fut choisie, car p53 est en aval des voies de signalisation ATR/CHK1 et SIRT1. Cette expérience a montré une augmentation légère et non significative de la viabilité relative dans les trois lignées à des concentrations de resvératrol d'environ 2,5 μM, et une réduction significative de la viabilité à des concentrations supérieures à 10 μM. En outre, le score de synergie Bliss a révélé un effet additif entre le resvératrol et VE-821. Dans un second temps, nous avons quantifié l’effet de différentes concentrations de resvératrol sur le cycle cellulaire. Dans les trois lignées cellulaires, on trouve un pourcentage significatif de cellules arrêtées en phase S après un traitement de 24 heures avec 12,5 μM de resvératrol, mais aucune différence significative entre les conditions DMSO et 2,5 μM de resvératrol. On n’observe pas de différence significative entre les lignées. Enfin, une expérience temporelle révèle que les effets du resvératrol pourraient s'estomper après 16h, et montre une légère augmentation des cellules arrêtées en phase S après un traitement à 2,5 μM de resvératrol à 16h, par rapport au contrôle DMSO, suggérant un temps d’observation intéressant en deçà de 16h et un potentiel effet du resvératrol à faible dose. Ces résultats semblent confirmer l'action du resvératrol sur la voie ATR/CHK1, avec un arrêt du cycle cellulaire en phase S après traitement par 12,5 μM de resvératrol, dans les trois lignées WT, SIRT1 KO et p53 KO. Ils suggèrent également un effet potentiellement bénéfique du resvératrol à faibles doses par le biais d'un stress réplicatif de faible intensité, sans démontrer de dépendance à SIRT1 ou p53. Enfin, ils soulignent la nécessité d’une observation à différentes échelles temporelles. / Resveratrol (RV/RSV) is an organic chemical compound known for its anti-cancer and rejuvenating effects on cells and organisms. To investigate the multiple mechanisms behind these effects, Y. Benslimane of the Harrington laboratory studied the effect of resveratrol in vitro, at concentrations ranging from 12.5 μM to 25 μM, on several human cancer cell lines, including NALM6 and JURKAT. His research has shown that treatment with resveratrol leads to activation of the ATR/CHK1 signaling pathway, which keeps mitotic cells in S phase to induce DNA repair. Resveratrol specifically displays a signature similar to that of hydroxyurea, an anti-cancer compound known to induce replicative stress. This induction of replicative stress seems complementary to the mechanisms exposed in the literature, which presents resveratrol as an activator of sirtuins, a family of histone deacetylases highly conserved across species and involved in DNA repair and metabolic response. However, while several articles demonstrate activation of sirtuin 1 (SIRT1) as a notable consequence of resveratrol treatment, studies by Benslimane et al. showed that sirtuin 1 knockout in NALM6 and Jurkat cells did not affect the observed phenotype of replicative stress. Because concentrations of resveratrol used in the literature vary from 0.5 μM to 100 μM in vitro, we hypothesized that this variance in experimental conditions might explain the variety of results observed. More specifically, in NALM6 cancer cells, we hypothesized that replicative stress caused by high concentrations (>12.5 μM) of resveratrol could mask activation of sirtuins and specifically sirtuin 1, while lower concentrations (<5 μM) would allow the potential observation of mechanisms parallel to activation of the ATR/CHK1 pathway. We also hypothesized that the time scale of observation played a role in the measurement of results and their observability. To examine our hypotheses, we first set the observation time at 72h post-treatment, and assessed the effect of resveratrol and the ATR inhibitor VE-821 on relative cell viability in NALM6 WT, p53 KO and SIRT1 KO cells. The p53 KO line was chosen, as p53 is downstream of the 6 ATR/CHK1 and SIRT1 signaling pathways. This experiment showed a slight, non-significant increase in relative viability in all three lines at resveratrol concentrations of around 2.5 μM, and a significant reduction in viability at concentrations above 10 μM. In addition, the Bliss synergy score revealed an additive effect between resveratrol and VE-821. In a second step, we quantified the effect of different resveratrol concentrations on the cell cycle. In all three cell lines, we found a significant percentage of cells arrested in S phase after 24h treatment with 12.5 μM resveratrol, but no significant difference between DMSO and 2.5 μM resveratrol conditions. No significant difference was observed between lines. Finally, a time-course experiment revealed that the effects of resveratrol might fade after 16h, and showed a slight increase in S-phase arrested cells after treatment with 2.5 μM RSV at 16h, compared with the DMSO control, suggesting an interesting observation time below 16h and a potential effect of resveratrol at low doses. These results seem to confirm the action of resveratrol on the ATR/CHK1 pathway, with cell cycle arrest in S phase after treatment with 12.5 μM resveratrol, in the three lines WT, SIRT1 KO and p53 KO. They also suggest a potentially beneficial effect of low-dose resveratrol via low-intensity replicative stress, without demonstrating dependence on SIRT1 or p53. Finally, they emphasize the need for observation on different time scales.
14

Rôles de la protéine E4F1 dans le contrôle de la réponse aux dommages de l’ADN dans le cancer du sein triple négatif / Roles of E4F1 protein in the control of the DNA damage response in triple negative breast cancer

Batnini, Kalil 25 April 2019 (has links)
La protéine E4F1 découverte comme cible cellulaire de l'oncoprotéine adénovirale E1A est une protéine ubiquitaire agissant comme facteur de transcription et comme E3-ligase atypique. La protéine E4F1 interagit également directement avec plusieurs gènes suppresseurs de tumeurs et des oncoprotéines, suggérant son implication dans la tumorigénèse. Des travaux antérieurs du laboratoire, sur les fonctions cellulaires d’E4F1 dans les cellules cancéreuses ont montré que sa déplétion entraîne une mort cellulaire massive dans les Mefs transformés déficients en p53. De plus, E4F1 contrôle directement l'expression de 38 gènes, notamment impliqués dans le métabolisme cellulaire et les checkpoints du cycle cellulaire/Réponse aux dommages de l'ADN (DDR), tel que Chek1 qui code un composant majeur du checkpoint ATR/ATM. Conformément à ce rôle d’E4F1 dans la survie des cellules cancéreuses chez la souris, des patientes atteintes d'un cancer du sein triple négatif (TNBC) exprimant fortement E4F1 présentent une survie sans rechute (RFS) plus faible.Nous avons donc décidé d’étudier pour la première fois le programme transcriptionnel d’E4F1 dans les cellules humaines et d’explorer son rôle dans la survie des cellules de TNBC, avec une attention particulière pour son rôle dans la réponse aux agents de chimiothérapie.Les transcriptomes (RNAseq) de cellules SUM159 de TNBC montrent, lors de la déplétion d’E4F1, une diminution de l’expression de 147 des 276 gènes associés à la DDR. La combinaison de RNAseq et de ChIPseq révèle qu’E4F1 régule directement 57 gènes dans les cellules de TNBC humaines. Parmi ces gènes, E4F1 lui-même, CHEK1, mais aussi TTI2 et PPP5C codant pour des régulateurs post-transcriptionnels de l'axe ATM/ATR-CHK1, et définissant ainsi un "régulon" ATM/ATR-CHK1, encore inconnu et dépendant d’E4F1. TTI2 forme avec TELO2 et TTI1, le complexe TTT nécessaire au repliement correct et à la stabilité des protéines de la famille PIKK, telles qu’ATR et ATM. La phosphatase PPP5C est impliquée dans l'activation de la signalisation ATR-CHK1. Fait important, nous montrons qu’E4F1 se fixe sur et régule probablement ces trois gènes in vivo dans des tumeurs TNBC dérivées de patientes (PDTX). Dans la lignée SUM159 et les PDTX, le recrutement d’E4F1 sur ces gènes est augmenté lors du traitement avec la Gemcitabine, un agent de chimiothérapie bloquant la réplication de l’ADN. Étonnamment, nous avons révélé qu’E4F1 contrôle aussi indirectement l'expression de TELO2, un second membre du complexe TTT. Par conséquent, dans les cellules TNBC déplétées en E4F1, les taux de protéines des CHK1, TTI2, TELO2 mais aussi des kinases ATM/ATR, sont fortement diminués, entraînant une déficience de la DDR. Ainsi, les cellules SUM159 déplétées en E4F1 ne parviennent pas à s'arrêter en phase S lors du traitement à la Gemcitabine et sont hautement sensibilisées à cet agent de chimiothérapie, ainsi qu'à d'autres agents endommageant l'ADN comme le Cisplatine. Dans leur ensemble, mes travaux de thèse révèlent que la voie de signalisation ATM/ATR-CHK1, et la réponse au stress / dommages de l'ADN sont étroitement contrôlées aux niveaux transcriptionnel et post-transcriptionnel par E4F1. E4F1 apparait donc comme un acteur central dans la survie cellulaire des cellules TNBC, en particulier lorsqu'elles sont exposées à des agents endommageant l'ADN ou à des agents de chimiothérapie. Ainsi E4F1 pourrait représenter un marqueur pronostique de réponse à la chimiothérapie et une cible thérapeutique potentielle. / The E4F1 protein discovered as the cellular target of the adenoviral oncoprotein E1A is a ubiquitous protein acting both as a transcription factor and as an atypical E3-ligase. E4F1 protein also interacts directly with several cellular tumor suppressors and oncoproteins, suggesting its involvement in tumorigenesis. Previous laboratory work on the cellular functions of E4F1 in cancer cells has shown that its depletion leads to massive cell death in transformed Mefs deficient in p53. In addition, E4F1 directly controls the expression of 38 genes, including genes involved in cell metabolism and cell cycle checkpoints/DNA Damage Response (DDR), such as Chek1 that encodes a major component of the ATR/ATM checkpoint. Consistent with this role of E4F1 in cancer cell survival in mice, patients with triple-negative breast cancer (TNBC) with high E4F1 expression exhibit a poorer relapse free survival (RFS).We therefore aimed to study for the first time the transcriptional program of E4F1 in human cells and explore its role in the survival of TNBC cells, with particular focus on its role in the response to chemotherapy agents.Transcriptomes (RNAseq) of SUM159 TNBC cells show, when E4F1 is depleted, a decrease in expression of 147 out of 276 DDR-associated genes. The combination of RNAseq and ChIPseq shows that E4F1 directly regulates 57 genes in human TNBC cells. Among these genes, E4F1 itself, CHEK1, but also TTI2 and PPP5C coding for post-transcriptional regulators of the ATM/ATR-CHK1 axis, and thus defining an ATM/ATR-CHK1 "regulon", undescribed and E4F1-dependent. TTI2 composes with TELO2 and TTI1, the TTT complex required for the correct folding and stability of PIKK family proteins, such as ATR and ATM. PPP5C phosphatase is involved in the activation of ATR-CHK1 signaling. Importantly, we show that E4F1 binds to and probably regulates these three genes in vivo in Patient Derived TNBC Xenografts (PDTX). In both SUM159 cells and PDTX, the recruitment of E4F1 on these genes is increased upon Gemcitabine treatment, a chemotherapy agent that impairs DNA replication. Surprisingly, we found that E4F1 also indirectly controls the expression of TELO2, a second member of the TTT complex. Consequently, in TNBC cells depleted of E4F1, the protein levels of CHK1, TTI2, TELO2 but also ATM/ATR kinases, are significantly decreased, leading to DDR deficiency. Thus, SUM159 cells depleted of E4F1 fail to stop in phase S during Gemcitabine treatment and are highly sensitized to this chemotherapy agent, as well as other DNA damaging agents such as Cisplatin. Altogether, my thesis results demonstrate that the ATM/ATR-CHK1 signaling pathway, and the response to stress / DNA damage are tightly controlled at the transcription and post-transcription levels by E4F1. E4F1 therefore appears to be a central actor in the cellular survival of TNBC cells, particularly when exposed to DNA-damaging agents or chemotherapy agents. Thus, E4F1 could represent a prognostic marker for chemotherapy response and a potential therapeutic target.
15

Le rôle de la structure de la chromatine naissante dans la réponse au stress réplicatif

Simoneau, Antoine 12 1900 (has links)
No description available.
16

Coordination entre les microtubules et le complexe Smc5-Smc6 dans le maintien de l'intégrité génomique

Laflamme, Guillaume 02 1900 (has links)
No description available.
17

Chromatin structure and DNA repair / Etude de la structure de la chromatine dans la réparation de I'ADN

Hoffbeck, Anne-Sophie 25 October 2013 (has links)
Notre génome est continuellement endommagé par des agents provoquant des lésions de l’ADN. Les cassures doubles brins de l’ADN (CDBs) sont les lésions les plus dangereuses. En effet, une CDB mal réparée peut mener à des aberrations de l’ADN pouvant conduire à l’apparition d’un cancer. Dans le but d’éviter les effets délétères des CDBs, nos cellules ont développé une voie de signalisation, nommée réponse aux dommages de l’ADN (RDA), permettant la détection des cassures et l’activation des points de contrôle du cycle cellulaire afin d’arrêter le cycle pendant la réparation des CDBs. Une des caractéristiques principales de la RDA est l’accumulation d’un grand nombre de facteurs sur l’ADN autour de la cassure, formant un foyer visible en microscopie. Cependant, l’efficacité de réparation de l’ADN est entravée par la structure condensée de la chromatine environnante. Les mécanismes de réparation de l’ADN surmontent ce problème en recrutant de nombreuses protéines permettant le réarrangement de la chromatine afin de faciliter la réparation. Le but de mon travail de thèse est d’identifier de nouvelles protéines impliquées dans le remodelage de la chromatine autour des CDBs. D’une part nous avons pour but d’identifier le protéome complet d’un foyer de réparation de l’ADN grâce à la technique PICh (Proteomics of Isolated Chromatin loci). D’autre part, nous étudions le rôle de l’oncoprotéine SET/TAF-1β, que nous avons identifié lors d’un criblage siRNA réalisé dans le but de découvrir de nouveaux facteurs chromatiniens impliqués dans la réparation des CDBs. / Various DNA damaging agents, that can cause DNA lesions, assault constantly our genome. The most deleterious DNA lesions are the breaks occurring in both strands of DNA (Double stand breaks: DSBs). Inefficient repair of DSBs can lead to aberrations that may induce cancer. To avoid these deleterious effects of DSBs, cells have developed signalling cascades which entail detection of the lesions and spreading of the signal that leads to arrest in cell cycle progression and efficient repair. A major characteristic of DNA damage response (DDR) is the accumulation of a vast amount of proteins around the DSBs that are visible in the cell as DNA damage foci. However, efficient DNA repair is hampered by the fact that genomic DNA is packaged into chromatin. The DNA repair machinery overcomes this condensed structure to access damaged DNA by recruiting many proteins that remodel chromatin to facilitate efficient repair. The aim of my PhD work is to identify novel proteinsinvolved in the DDR and/or the remodelling of chromatin surrounding DSBs. On one hand, we take advantage of the PICh (Proteomics of Isolated Chromatin loci) technique and we aim to identify the entire proteome of DNA repair foci. On the other hand, we study the role of the oncogene SET/TAFIβ, a major hit of a siRNA screen performed to identify novel chromatin related proteins that play role in repair of DSBs.
18

R-2-hydroxyglutarate modulates DNA Replication via Integrated Stress Response

Sharma, Jyoti 06 1900 (has links)
Les gènes de l'isocitrate déshydrogénase (IDH) sont mutés dans 70 à 80 % des gliomes de bas grade. Les enzymes mutantes IDH qui en résultent présentent une activité de gain de fonction, produisant du R-2-hydroxyglutarate (R-2-HG), appelé oncométabolite en raison de son accumulation anormale dans les tumeurs et de ses activités oncogéniques potentielles. Parmi les caractéristiques du cancer telles que la reprogrammation métabolique et épigénétique, le stress réplicatif et la stabilité du génome ont été peu caractérisés dans les cancers IDH-mutants. Par conséquent, cette étude vise à étudier l'impact de l'accumulation de R-2-HG sur la réplication de l'ADN et sa contribution au stress réplicatif dans les cancers IDH-mutants. Nous avons étudié la dynamique de la fourche de réplication dans des astrocytes humains normaux et confirmé les résultats dans d'autres lignées cellulaires normales et cancéreuses. Nous avons constaté que le traitement exogène par l'octyl-R-2-HG entravait la progression de la fourche de réplication et retardait par conséquent l'achèvement de la phase S. L'évaluation des niveaux de phosphorylation des protéines RPA, CHK1 et H2AX a révélé que la réponse classique au stress réplicatif (RSR) n'était pas activée. Un état cellulaire dans lequel la réplication de l'ADN est altérée sans activation de la RSR a notamment été décrit dans la littérature comme résultant de l'activation de la réponse au stress intégré (ISR). Cependant, l'activation de la RSI dans les cancers mutants IDH n'est pas bien étudiée. En évaluant les marqueurs d'activation de la RSI, tels que la phosphorylation de l'eIF2α et les niveaux de protéines ATF4, nous avons montré que l'octyl-R-2-HG activait la RSI. De plus, le blocage de l'ISR a partiellement sauvé la fourche de réplication et la progression de la phase S. Nous avons répliqué cette étude oncométrique. Nous avons reproduit ce défaut de réplication de l'ADN lié à l'oncométabolite ainsi que l'effet de sauvetage partiel de l'ISRIB lors de l'induction de la surexpression du gène IDH mutant. Nos résultats indiquent que la production de R-2-HG associée à la mIDH peut inhiber la dynamique normale de réplication de l'ADN via la signalisation ISR. / The isocitrate dehydrogenase (IDH) genes are mutated in 70-80% of low-grade gliomas. The resulting IDH mutant enzymes exhibit gain-of-function activity, producing R-2-hydroxyglutarate (R-2-HG), which is referred to as an oncometabolite due to its abnormal accumulation in tumours and potential oncogenic activities. Among the hallmarks of cancer such as metabolic and epigenetic reprogramming, replicative stress and genome stability have been poorly characterized in IDH-mutant cancer. Therefore, this study aims to investigate the impact of R-2-HG accumulation on DNA replication and its contribution to replicative stress in IDH-mutant cancers. We investigated replication fork dynamics in normal human astrocytes and confirmed the results in other normal and cancer cell lines. We found that exogenous treatment with octyl-R-2-HG impaired replication fork progression and consequently delayed S-phase completion. Assessment of RPA, CHK1 and H2AX protein phosphorylation levels revealed that the classical Replicative Stress Response (RSR) was not activated. Among others, a cell state in which DNA replication was impaired without activation of the RSR has been described in the literature as a result of activation of the Integrated Stress Response (ISR). However, ISR activation in IDH-mutant cancers is not well studied. Hence, by assessing ISR activation markers such as eIF2α phosphorylation and ATF4 protein levels, we showed that octyl-R-2-HG activated ISR. Moreover, blocking ISR partially rescued the replication fork and S-phase progression. We replicated this oncometabolite-related DNA replication defect as well as ISRIB’s partial rescue effect upon induction of mutant IDH gene overexpression. Our results indicate that mIDH-associated R-2-HG production possibly inhibits normal DNA replication dynamics via ISR signalling.
19

Characterization of Pten and Trp53 deficient prostatic tumors in mice / Caractérisation des tumeurs prostatiques déficientes pour Pten et Trp53 chez la souris

El Bizri, Rana 31 July 2018 (has links)
Le cancer de la prostate est la forme de cancer la plus fréquente et la troisième cause de décès par cancer chez l’homme dans les sociétés occidentales. Alors que la plupart des cancers de la prostate localisés sont éradiqués chirurgicalement, la plupart des tumeurs métastatiques répondant initialement aux thérapies par privation d’androgènes deviennent résistantes au traitement, causant généralement le décès du patient. Les gènes suppresseurs de tumeur PTEN et p53 étant fréquemment mutés dans les cancers de la prostate métastatiques et résistants à la castration, le laboratoire d’accueil a généré des modèles murins dans lesquels Pten et/ou Trp53 sont sélectivement invalidés à l’âge adulte dans les cellules épithéliales prostatiques dans le but de déterminer les évènements clés conduisant à la progression du cancer de la prostate. Notre étude révèle que l’invalidation de PTEN stimule la prolifération des cellules épithéliales prostatiques et conduit à des néoplasmes prostatiques intraépithéliaux en quelques mois. Cette hyper-prolifération induit un stress réplicatif et une réponse aux dommages de l’ADN qui va conduire à un arrêt progressif de la croissance cellulaire et une entrée en sénescence. Les cellules sénescentes sécrètent de nombreuses cytokines et de chimiokines, et peuvent accumuler des mutations contribuant ainsi à la progression de la tumeur. Il est notable qu’en l’absence de Trp53, les épithéliums prostatiques dépourvus de Pten développent des néoplasmes prostatiques intraépithéliaux entrant en sénescence. Cependant, la formation d’adénocarcinomes est accélérée et des tumeurs sarcomatoïdes pouvant générer à long terme des métastases apparaissent. En l’absence de Pten, certaines cellules épithéliales prostatiques perdent leur identité moléculaire en exprimant des marqueurs caractéristiques de cellules souches et différenciation neuroendocrinienne. Nous avons également mis en évidence des cellules épithéliales prostatiques déficientes en PTEN et p53 résistantes à la castration exprimant à la fois des marqueurs de cellules basales et luminales. En conclusion, nos travaux ont permis une avancée dans la compréhension des mécanismes conduisant à des formes incurables de cancer de la prostate. Les traitements actuels ayant des effets secondaires importants et pouvant générer des résistances, le développement de nouvelles stratégies thérapeutiques permettant l’élimination des cellules sénescentes mais aussi des cellules épithéliales prostatiques exprimant des marqueurs de cellules basales et luminales dans les lésions précancéreuses représente des perspectives intéressantes pour traiter le cancer de la prostate. / Prostate cancer (PCa) is a leading cause of male cancer death worldwide. While most locally PCa are curable, metastatic tumors initially respond to androgen deprivation therapy but ultimately relapse to castration-resistant prostate cancer (CRPC), which is a lethal disease. Since the tumor suppressor genes PTEN and p53 are frequently mutated in metastatic and CRPC, the host laboratory generated mouse models in which Pten and/or Trp53 are selectively ablated in adult prostatic epithelial cells (PECs) in order to unravel the key events leading to prostate cancer progression. Our study reveals that Pten ablation stimulates PECs proliferation forming prostatic intraepithelial neoplasia (PIN) within a few months. This hyper-proliferation induces replicative stress and a DNA damage response (DDR), which in turn leads to a progressive growth arrest with characteristics of cell senescence. As senescent cells secrete a large number of cytokines and chemokines, and can accumulate other mutations, they might contribute to tumor progression. Importantly, in the absence of Trp53, most Pten-null PECs develop PINs that enter senescence. However partial loss of PECs identity is detected as we show enhanced stemness and focal neuroendocrine differentiation of luminal Pten-null PECs. In some cases, adenocarcinoma and sarcomatoid tumors are formed, and more than one-third of the latter develop metastases. Strikingly, we also show formation of a castrate-resistant cell entity of both Pten and Pten/Trp53-null PECs sharing luminal and basal markers. Taken together, as current treaments lead to side effects and resistance, the development of therapeutic strategies to eliminate senescent cells/and or PECs expressing luminal and basal/stem progenitor in pre- cancerous lesions represents promising option for prostate cancer treatment.

Page generated in 0.0557 seconds