Spelling suggestions: "subject:"sturmian functions"" "subject:"sturmiana functions""
1 |
Mathematical methods in atomic physics = Métodos matemáticos en física atómicaDel Punta, Jessica A. 17 March 2017 (has links)
Los problemas de dispersión de partículas, como son los de dos y tres cuerpos, tienen
una relevancia crucial en física atómica, pues permiten describir diversos procesos de
colisiones. Hoy en día, los casos de dos cuerpos pueden ser resueltos con el grado de
precisión numérica que se desee. Los problemas de dispersión de tres partículas cargadas
son notoriamente más difíciles pero aún así algo similar, aunque en menor medida, puede
establecerse.
El objetivo de este trabajo es contribuir a la comprensión de procesos Coulombianos
de dispersión de tres cuerpos desde un punto de vista analítico. Esto no solo es
de fundamental interés, sino que también es útil para dominar mejor los enfoques
numéricos que se actualmente se desarrollan dentro de la comunidad de colisiones
atómicas. Para lograr este objetivo, proponemos aproximar la solución del problema
con desarrollos en series de funciones adecuadas y expresables analíticamente. Al hacer
esto, desarrollamos una serie de herramientas matemáticas relacionadas con funciones
Coulombianas, ecuaciones diferenciales de segundo orden homogéneas y no homogéneas,
y funciones hipergeométricas en una y dos variables.
En primer lugar, trabajamos con las funciones de onda Coulombianas radiales y
revisamos sus principales propiedades. Así, extendemos los resultados conocidos para
dar expresiones analíticas de los coeficientes asociados al desarrollo, en serie de funciones
de tipo Laguerre, de las funciones Coulombianas irregulares. También establecemos una
nueva conexión entre los coeficientes asociados al desarrollo de la función Coulombiana
regular y los polinomios de Meixner-Pollaczek. Esta relación nos permite deducir
propiedades de ortogonalidad y clausura para estos coeficientes al considerar la carga
como variable.
Luego, estudiamos las funciones hipergeométricas de dos variables. Para algunas de
ellas, como las funciones de Appell o las confluentes de Horn, presentamos expresiones
analíticas de sus derivadas respecto de sus parámetros.
También estudiamos un conjunto particular de funciones Sturmianas Generalizadas
de dos cuerpos construidas considerando como potencial generador el potencial de
Hulthén. Contrariamente al caso habitual, en el que las funciones Sturmianas se
construyen numéricamente, las funciones Sturmianas de Hulthén poseen forma analítica.
Sus propiedades matem´aticas pueden ser analíticamente estudiadas proporcionando
una herramienta única para comprender y analizar los problemas de dispersión y sus
soluciones.
Además, proponemos un nuevo conjunto de funciones a las que llamamos funciones
Quasi-Sturmianas. Estas funciones se presentan como una alternativa para expandir
la solución buscada en procesos de dispersi´on de dos y tres cuerpos. Se definen
como soluciones de una ecuación diferencial de tipo-Schrödinger, no homogénea. Por
construcción, incluyen un comportamiento asintótico adecuado para resolver problemas
de dispersión. Presentamos diferentes expresiones analíticas y exploramos sus propiedades
matemáticas, vinculando y justificando los desarrollos realizados previamente.
Para finalizar, utilizamos las funciones estudiadas (Sturmianas de Hulthén y
Quasi-Sturmianas) en la resolución de problemas particulares de dos y tres cuerpos.
La eficacia de estas funciones se ilustra comparando los resultados obtenidos con datos
provenientes de la aplicación de otras metodologías. / Two and three-body scattering problems are of crucial relevance in atomic physics as
they allow to describe different atomic collision processes. Nowadays, the two-body cases
can be solved with any degree of numerical accuracy. Scattering problem involving three
charged particles are notoriously difficult but something similar –though to a lesser extentcan
be stated.
The aim of this work is to contribute to the understanding of three-body Coulomb
scattering problems from an analytical point of view. This is not only of fundamental
interest, it is also useful to better master numerical approaches that are being developed
within the collision community. To achieve this aim we propose to approximate
scattering solutions with expansions on sets of appropriate functions having closed form.
In so doing, we develop a number of related mathematical tools involving Coulomb
functions, homogeneous and non-homogeneous second order differential equations, and
hypergeometric functions in one and two variables.
First we deal with the two-body radial Coulomb wave functions, and review their
main properties. We extend known results to give in closed form the Laguerre expansions
coefficients of the irregular solutions, and establish a new connection between the
coefficients corresponding to the regular solution and Meixner-Pollaczek polynomials.
This relation allows us to obtain an orthogonality and closure relation for these coefficients
considering the charge as a variable.
Then we explore two-variable hypergeometric functions. For some of them, such as
Appell and confluent Horn functions, we find closed form for the derivatives with respect
to their parameters.
We also study a particular set of two-body Generalized Sturmian functions constructed
with a Hulth´en generating potential. Contrary to the usual case in which Sturmian
functions are numerically constructed, the Hulth´en Sturmian functions can be given in
closed form. Their mathematical properties can thus be analytically studied providing a
unique tool to investigate scattering problems.
Next, we introduce a novel set of functions that we name Quasi-Sturmian functions.
They constitute an alternative set of functions, given in closed form, to expand the sought
after solution of two- and three-body scattering processes. Quasi-Sturmian functions
are solutions of a non-homogeneous second order Schr¨odinger-like differential equation
and have, by construction, the appropriate asymptotic behavior. We present different
analytic expressions and explore their mathematical properties, linking and justifying the
developed mathematical tools described above.
Finally we use the studied Hulth´en Sturmian and Quasi-Sturmian functions to solve
some particular two- and three-body scattering problems. The efficiency of these sets of
functions is illustrated by comparing our results with those obtained by other methods
|
2 |
Application of Generalized Sturmian Basis Functions to Molecular Systems / Applications de bases Sturmiennes généralisées à des systèmes moléculairesGranados Castro, Carlos Mario 18 February 2016 (has links)
Dans cette thèse nous implémentons une approche Sturmienne, qui se sert de fonctions Sturmiennes généralisées (GSFs, en anglais), pour étudier l'ionisation de molécules par collisions de photons ou d'électrons. Comme l'Hamiltonian de la cible est non central, la description de l'ionisation des molécules n'est pas simple. En plus, puisque l'orientation spatiale de la molécule n'est généralement pas déterminée lors des expériences, une question importante à considérer est l'orientation aléatoire de la cible. Dans la littérature, des nombreuses méthodes théoriques ont été proposées pour traiter les molécules ; néanmoins, la plupart sont adaptées pour étudier, principalement, des états liés. Une description précise des états non-liés (continuum) des molécules reste un défi. Ici, nous proposons d'attaquer le problème avec les GSFs qui ont, par construction, un comportement asymptotique approprié au système étudié. Cette propriété permet de faire des calculs d'ionisation de façon plus efficace. Dans une première partie, nous validons l'implémentation de notre approche Sturmienne par l'étude de la photo-ionisation (PI) d'atomes. Différents potentiels effectifs sont utilisés pour décrire l'interaction de l'électron éjecté avec la cible ionisée. Les sections efficaces de PI sont calculées dans les jauges de longueur et de vitesse. Pour l'atome d'hydrogène la comparaison avec la formule analytique, indique qu'une convergence très rapide est obtenue avec un nombre modéré de GSFs. Pour He et Ne, nos résultats montrent, également, un très bon accord avec d'autres résultats théoriques et expérimentaux. Dans le cas des molécules, nous avons abordé l'orientation aléatoire avec deux stratégies : une utilise un potentiel moléculaire modèle (non-central), et l'autre un potentiel moyenné (central). Nous étudions la PI de CH4, NH3 et H2O à partir des orbitales de valence extérieure et intérieure, et aussi de SiH4 et H2S à partir des orbitales extérieures. Les sections efficaces de PI et les paramètres d'asymétrie (obtenus à partir des distributions angulaires) sont comparés avec ceux publiés dans la littérature. Nos résultats sont globalement satisfaisants et reproduisent les caractéristiques principales de ce processus d'ionisation. Dans une deuxième partie de la thèse, nous utilisons l'approche Sturmienne pour étudier l'ionisation de molécules par impact d'électrons. Pour le processus (e,2e), les sections efficaces triplement différentielles (TDCSs) sont examinées dans la première et deuxième approximation de Born, également en traitant de deux façons l'orientation aléatoire des molécules. Nous avons testé la méthode en comparent nos TDCSs pour l'atome d'hydrogène, montrant aussi son efficacité. Enfin, nous l'avons apliqué à l'ionisation de CH4, H2O et NH3, et nous avons comparé les résultats avec des données expérimentales et théoriques disponibles dans la littérature. Dans la plupart des cas, nos TDCSs sont en accord satisfaisant avec ces données, en particulier pour H2O et pour des électrons lents dans le cas de CH4 / In this PhD thesis we implement a Sturmian approach, based on generalized Sturmian functions (GSFs), to study the ionization of molecules by collision with photons or electrons. Since the target Hamiltonian is highly non-central, describing molecular ionization is far from easy. Besides, as the spatial orientation of the molecule in most experimental measurements is not resolved, an important issue to take into account is its random orientation. In the literature, many theoretical methods have been proposed to deal with molecules, but many of them are adapted to study mainly bound states. An accurate description of the unbound (continuum) states of molecules remains a challenge. Here we propose to tackle these problems using GSFs, which are characterized to have, by construction, the correct asymptotic behavior of the studied system. This property allows one to perform ionization calculations more efficiently. We start and validate our Sturmian approach implementation by studying photoionization (PI) of H, He and Ne atoms. Different model potentials were used in order to describe the interaction of the ejected electron with the parental ion. We calculated the corresponding PI cross sections in both length and velocity gauges. For H atom, the comparison with the analytical formula shows that a rapid convergence can be achieved using a moderate number of GSFs. For He and Ne we have also an excellent agreement with other theoretical calculations and with experimental data. For molecular targets, we considered two different strategies to deal with their random orientation: one makes use of a molecular model potential (non-central), while the other uses an angular averaged version of the same potential (central). We study PI for CH4, NH3, and H2O, from the outer and inner valence orbitals, and for SiH4 and H2S from the outer orbitals. The calculated PI cross sections and also the asymmetry parameters (obtained from the corresponding angular distributions) are compared with available theoretical and experimental data. For most cases, we observed an overall fairly good agreement with reference values, grasping the main features of the ionization process. In a second part of the thesis, we apply the Sturmian approach to study ionization of molecules by electron collisions. In the so-called (e,2e) processes, fully differential cross sections are investigated within both the first- or the second-Born approximations. Again, we show how to include in the description the random orientation of the molecule. We start with H atom, as a test system: the comparison of the calculated triple differential cross sections (TDCSs) with analytical results illustrates, similarly to the PI case, the efficiency of our GSF method. It is then applied to ionization of CH4, H2O and NH3, and comparisons are made with the few theoretical and experimental data available in the literature. For most cases, our TDCSs can reproduce such data, particularly for H2O and for slow ejected electrons in CH4
|
3 |
Mathematical methods in atomic physics / Métodos matemáticos en física atómica / Méthodes mathématiques en physique atomiqueDel Punta, Jessica A. 17 March 2017 (has links)
Les problèmes de diffusion de particules, à deux et à trois corps, ont une importance cruciale en physique atomique, car ils servent à décrire différents processus de collisions. Actuellement, le cas de deux corps peut être résolu avec une précision numérique désirée. Les problèmes de diffusion à trois particules chargées sont connus pour être bien plus difficiles mais une déclaration similaire peut être affirmée. L’objectif de ce travail est de contribuer, d’un point de vue analytique, à la compréhension des processus de diffusion Coulombiens à trois corps. Ceci a non seulement un intérêt fondamental, mais est également utile pour mieux maîtriser les approches numériques en cours d’élaboration au sein de la communauté de collisions atomiques. Pour atteindre cet objectif, nous proposons d’approcher la solution du problème avec des développements en séries sur des ensembles de fonctions appropriées et possédant une expression analytique. Nous avons ainsi développé un nombre d’outils mathématiques faisant intervenir des fonctions Coulombiennes, des équations différentielles de second ordre homogènes et non-homogènes, et des fonctions hypergéométriques à une et à deux variables / Two and three-body scattering problems are of crucial relevance in atomic physics as they allow to describe different atomic collision processes. Nowadays, the two-body cases can be solved with any degree of numerical accuracy. Scattering problem involving three charged particles are notoriously difficult but something similar -- though to a lesser extent -- can be stated. The aim of this work is to contribute to the understanding of three-body Coulomb scattering problems from an analytical point of view. This is not only of fundamental interest, it is also useful to better master numerical approaches that are being developed within the collision community. To achieve this aim we propose to approximate scattering solutions with expansions on sets of appropriate functions having closed form. In so doing, we develop a number of related mathematical tools involving Coulomb functions, homogeneous and non-homogeneous second order differential equations, and hypergeometric functions in one and two variables
|
Page generated in 0.0927 seconds