21 |
The origin and dynamic interaction of solar magnetic fieldsWilmot-Smith, Antonia January 2008 (has links)
The dynamics of the solar corona are dominated by the magnetic field which creates its structure. The magnetic field in most of the corona is ‘frozen’ to the plasma very effectively. The exception is in small localised regions of intense current concentrations where the magnetic field can slip through the plasma and a restructuring of the magnetic field can occur. This process is known as magnetic reconnection and is believed to be responsible for a wide variety of phenomena in the corona, from the rapid energy release of solar flares to the heating of the high-temperature corona. The coronal field itself is three-dimensional (3D), but much of our understanding of reconnection has been developed through two-dimensional (2D) models. This thesis describes several models for fully 3D reconnection, with both kinematic and fully dynamic models presented. The reconnective behaviour is shown to be fundamentally different in many respects from the 2D case. In addition a numerical experiment is described which examines the reconnection process in coronal magnetic flux tubes whose photospheric footpoints are spun, one type of motion observed to occur on the Sun. The large-scale coronal field itself is thought to be generated by a magnetohydrodynamic dynamo operating in the solar interior. Although the dynamo effect itself is not usually associated with reconnection, since the essential element of the problem is to account for the presence of large-scale fields, reconnection is essential for the restructuring of the amplified small-scale flux. Here we examine some simple models of the solar-dynamo process, taking advantage of their simplicity to make a full exploration of their behaviour in a variety of parameter regimes. A wide variety of dynamic behaviour is found in each of the models, including aperiodic modulation of cyclic solutions and intermittency that strongly resembles the historic record of solar magnetic activity.
|
22 |
On the Nature Of Propagating MHD Waves In The Solar AtmosphereGupta, Girjesh R 12 1900 (has links) (PDF)
One of the most persistent problem in solar physics is the identification of the mechanism that heats the solar corona and accelerates the fast solar wind. Magneto-hydrodynamic (MHD)waves play a crucial role in heating of the solar corona and acceleration of the solar wind. Different types of oscillations have been now observed by various instruments. These are interpreted as due to ubiquitous presence of MHD waves. The magnetic field plays a fundamental role in the propagation and properties of these MHD waves. The topology (structure)of the magnetic fields are different in different regions of the solar atmosphere viz., active regions (high-lying closed magnetic fields), quiet Sun (low-lying closed magnetic fields) and coronal holes (open magnetic fields). The purpose of this dissertation is to study the nature of these propagating MHD waves in different regions of the solar atmosphere.
It is believed that polar coronal holes which connects the inner corona and the solar wind, are the source regions of the fast solar wind. The on-disk part of a polar coronal hole can be divided into network and internetwork regions. Long time series(sit-and-stare)data have been obtained from the SUMER/SoHO spectrometer in N iv 765Å and Ne viii 770Å spectral lines to search for the presence of waves in these two different regions from a statistical approach. The network bright regions indicate the presence of compressional waves with a dominant period of ≈ 25 min in both the lines. Moreover, we found that there is a difference in the nature of the wave propagation in the bright (‘network’), as opposed to the dark (‘internetwork’) regions, with the latter sometimes showing evidence of downwardly propagating waves that are not seen in the former. This is consistent with the magnetic topology, as open field lines are rooted in network regions whereas internetwork region has low lying closed field lines. From a measurement of propagation speeds, we found all waves are subsonic, indicating that the majority of them are slow magneto-acoustic in nature.
The off-limb part of coronal holes can be divided into plume and inter-plume regions. The simultaneous observations were performed with EIS/Hinode and SUMER/SoHO spectrometer in Fe xii 195Å and Ne viii 770Å spectral lines respectively. We detected the presence of accelerating waves in a polar inter-plume region with a period of 15 min to 20 min in both the spectral lines and a propagation speed increasing from 130 ± 14 km s−1 just above the limb, to 330 ± 140 kms s−1 around 160” above the limb. These waves can be traced to originate from a bright region of the on-disk part of the coronal hole which can be visualized as the base of the coronal funnels. The adjacent plume region also shows the presence of propagating disturbance with the same range of periodicity but with propagation speeds in the range of 135 ± 18 kms s−1 to 165 ± 43 kms s−1 only. We found that the waves within the plumes are not observable (may be getting dissipated) far off-limb whereas this is not the case in the inter-plume region. We suggested that the waves are likely either Alfv´enic or fast magneto-acoustic in the inter-plume regions and slow magneto-acoustic in the plume regions. These results support the view that the inter-plume regions area preferred channel for the acceleration of the fast solar wind.
The quiet Sun can be further divided into bright magnetic (network), bright non-magnetic and dark non-magnetic (internetwork) regions. Simultaneous observations were performed in Ca ii filtergram from SOT/Hinode, TRACE 1550Åpassband and with SUMER/SoHO spectrometer in N iv 765ÅandNe viii 770Åspectral lines to study the oscillations in these different regions. We detected the presence of long period oscillations with periods between 15 min to 30 min in bright magnetic regions. The oscillations were detected from chromospheric height to low coronal heights. Power maps showed that low period powers are mainly concentrated in dark regions whereas long period powers are concentrated in bright magnetic regions. We proposed that these 15 min and above periods can propagate up to the coronal heights through ‘magneto¬acoustic portals’. However in this case only with the spectral imaging data, it was not possible to identify the mode of wave propagation.
To detect the presence of waves in active regions, we have analysed the imaging and spec¬troscopic data acquired during the total solar eclipse of 2006 and 2009 respectively. We found the oscillations of periods 27 s and 20 s in imaging data obtained in green (Fe xiv 5303Å) and red (Fe x 6374Å) coronal emission lines respectively. Significant oscillations with high proba¬bility estimates were detected at boundary of active region and in the neighbourhood, rather than within the loops itself. We also reported the detection of oscillations in intensity, velocity and line width having periods in the range of 25 s to 50 s with spectroscopic data again obtained in green and red coronal emission lines. These high frequency oscillations were interpreted in terms of presence of fast magneto-acoustic waves or torsional Alfv´en waves.
These detected propagating MHD waves may carry sufficient energy to heat the corona and provide enough momenta to accelerate the fast solar wind. In addition, these waves may also provide input for the measurement of coronal magnetic field using the technique of ‘coronal seismology’.
|
23 |
Propriétés thermiques et morphologiques de la couronne solaire : estimation de la robustesse des diagnostics par mesure d'émission différentielle (DEM) et reconstructions tomographiques des pôles / Thermal and morphological properties of the solar corona : estimation of the robustness of the Differential Emission Measure diagnostics (DEM) and tomographic reconstruction of the polesGuennou, Chloé 24 October 2013 (has links)
L'évolution de notre compréhension des propriétés de la couronne solaire dépend largement de la détermination empirique ou semi-empirique des paramètres fondamentaux du plasma, tels que le champ magnétique, la densité et la température, mais pour lesquels il n'existe pas de mesure directe. L'intégration le long de la ligne de visée complique considérablement l'interprétation des observations, du fait de la superposition de structures aux propriétés physiques différentes. Pour lever cette ambiguïté, on dispose de plusieurs outils, dont la mesure d'émission différentielle (ou DEM; Differential Emission Measure), qui permet d'obtenir la quantité de plasma en fonction de la température le long de la ligne de visée, et la tomographie, qui permet, elle, d'obtenir la distribution spatiale de l'émissivité. Le couplage de ces deux outils permet d'obtenir un diagnostic tridimensionnel en température et densité de la couronne. A l'heure actuelle, le code utilisé dans ce travail est l'un des deux seuls au monde capables de réaliser ce couplage. Cependant, ces deux méthodes requièrent un processus d'inversion, dont les difficultés intrinsèques peuvent fortement limiter l'interprétation des résultats. La méthode développée dans cette thèse s'attache à évaluer la robustesse des diagnostics spectroscopiques par DEM, en proposant une nouvelle technique de caractérisation tenant compte des différentes sources d'incertitudes mises en jeu. En utilisant une approche probabiliste, cette technique permet d'étalonner a priori le problème d'inversion, et ainsi d'étudier son comportement et ses limitations dans le cadre de modèles simples. L'avantage de ce type d'approche est sa capacité à fournir des barres d'erreurs associées aux DEMs reconstruites à partir de données réelles. La technique développée a d'abord été appliquée à l'imageur SDO/AIA dans le cas de modèles de DEMs simples mais capables de représenter une grande variété de conditions physiques au sein de la couronne. Si l'inversion de plasmas proches de l'isothermalité apparaît robuste, nos résultats montrent qu'il n'en va pas de même pour les plasmas largement distribués en température, pour lesquelles les DEMs reconstruites sont à la fois moins précises mais aussi biaisées vers des solutions secondaires particulières. La technique a ensuite été appliquée au spectromètre Hinode/EIS, en utilisant un modèle de DEM représentant la distribution en loi de puissance des DEMs des régions actives, dont la pente permet de fournir des contraintes relatives à la fréquence des événements de chauffage coronal. Nos résultats montrent que les sources d'incertitudes sont à l'heure actuelle trop élevées pour permettre une mesure exploitable de la fréquence. La dernière partie est consacrée aux reconstructions tridimensionnelles obtenues par couplage tomographie/DEM, en s'intéressant aux structures polaires. Premières reconstructions réalisées avec AIA, nos résultats permettent d'étudier l'évolution en température et densité en fonction de l'altitude, montrant la présence de plumes polaires plus chaudes et denses que leur environnement. / Progress in our understanding of the solar corona properties is highly dependant of the emipirical or semi-empirical determination of the plasma fundamental parameters, such as magnetic field, density and temperature. However, there is no direct measurements of such quantities; the integration along the line of sight considerably complicates the interpretations of the observations, due to the superimposition of structures with different properties. To avoid this ambiguity, there exist several tools, including the Differential Emission Measure (DEM) and the tomography reconstruction technique. The former provides the quantity of emitting material as a function of the temperature, whereas the latter is able to reconstruct the three dimensional distribution of the coronal emissivity. Coupling these two techniques leads to a three dimensional diagnostic of the temperature and density. The inversion code used in this work is currently one of the two codes in the world able to perform this coupling. The method described in this work has been developed in order to estimate the robustness of the spectroscopic diagnostics using the DEM formalism, using a new characterisation method taken into account the different uncertainty sources involved in the inversion process. Using a probabilistic approach, this technique is able to calibrate a priori the DEM inversion problem and thus allows to study the inversion behavior and limitations in the context of simple DEMs models. The advantage of this method is its ability to provide confidence level on the reconstructed DEMs computed from real data. First applied to the SDO/AIA (Atmospheric Imaging Assembly) imager in the case of simple models able to represent a variety of plasma conditions, our results show that DEM inversion of isothermal or near-isothermal plasmas is robust, whereas the multithermal solutions are less accurate but also biased to secondary solutions. We also applied the method to the Hinode/EIS (EUV Imaging Spectrometer) spectrometer, using a power law DEM, typical of active regions DEM, from which the slope provides important constraints related to the coronal heating frequency. Our results point out that the different uncertainty sources are currently too high to allow exploitable measurements of this frequency. The last part is dedicated to the three-dimensional reconstructions obtained by coupling tomography and DEM tools, focusing on polar structures. First reconstructions obtained using AIA data, our results allow to study the evolution of the temperature and density as a function of altitude, showing polar plumes denser and hotter than their surrondings.
|
24 |
Solitary waves and enhanced incoherent scatter ion linesEkeberg, Jonas January 2011 (has links)
This thesis addresses solitary waves and their significance for auroral particle acceleration, coronal heating and incoherent scatter radar spectra. Solitary waves are formed due to a balance of nonlinear and dispersive effects. There are several nonlinearities present in ideal magnetohydrodynamics (MHD) and dispersion can be introduced by including theHall termin the generalised Ohm’s law. The resulting system of equations comprise the classical ideal MHD waves, whistlers, drift waves and solitarywave solutions. The latter reside in distinct regions of the phase space spanned by the speed and the angle (to the magnetic field) of the propagating wave. Within each region, qualitatively similar solitary structures are found. In the limit of neglected electron intertia, the solitary wave solutions are confined to two regions of slow and fast waves, respectively. The slow (fast) structures are associated with density compressions (rarefactions) and positive (negative) electric potentials. Such negative potentials are shown to accelerate electrons in the auroral region (solar corona) to tens (hundreds) of keV. The positive electric potentials could accelerate solar wind ions to velocities of 300–800 km/s. The structure widths perpendicular to themagnetic field are in the Earth’s magnetosphere (solar corona) of the order of 1–100 km (m). This thesis also addresses a type of incoherent scatter radar spectra, where the ion line exhibits a spectrally uniform power enhancement with the up- and downshifted shoulder and the spectral region in between enhanced simultaneously and equally. The power enhancements are one order of magnitude above the thermal level and are often localised to an altitude range of less than 20 km at or close to the ionospheric F region peak. The observations are well-described by a model of ion-acoustic solitary waves propagating transversely across the radar beam. Two cases of localised ion line enhancements are shown to occur in conjunction with auroral arcs drifting through the radar beam. The arc passages are associated with large gradients in ion temperature, which are shown to generate sufficiently high velocity shears to give rise to growing Kelvin-Helmholtz (K-H) instabilities. The observed ion line enhancements are interpreted in the light of the low-frequency turbulence associated with these instabilities. / Denna avhandling handlar om solitära vågor och deras roll i norrskensacceleration och koronaupphettning, samt deras signatur i spektra uppmätta med inkoherent spridningsradar. Solitära vågor bildas genom en balans mellan ickelinjära och dispersiva effekter. Ickelinjäriteter finns det gott om i ideal magnetohydrodynamik (MHD) och dispersion kan införas genom att inkludera Halltermen i den generaliserade Ohms lag. Det resulterande ekvationssystemet omfattar de klassiska vågorna inom ideal MHD, visslare, driftvågor och solitära vågor. De sistnämnda återfinns i väldefinierade områden i fasrummet som spänns upp av farten och vinkeln (mot magnetfältet) för den propagerande vågen. Inom varje sådant område återfinns kvalitativt lika solitära våglösningar. Om man försummar elektronernas tröghet begränsas de solitära våglösningarna till två områden med långsamma respektive snabba vågor. De långsamma (snabba) strukturerna är associerade med täthets-kompressioner (förtunningar) och positiva (negativa) elektriska potentialer. De negativa potentialerna visas kunna accelerera elektroner i norrskensområdet (solens korona) till tiotals (hundratals) keV medan de positiva potentialerna accelererar solvindsjoner till hastigheter på 300–800 km/s. Strukturbredderna vinkelrät mot magnetfältet är i jordens magnetosfär (solens korona) av storleksordningen 1–100 km (m). Denna avhandling tar även upp en typ av inkoherent spridningsradarspektra, där jonlinjen uppvisar en spektralt uniform förstärkning. Detta innebär att den upp- och nedskiftade skuldran och spektralbandet däremellan förstärks simultant och i lika hög grad. Effektförstärkningen är en storleksordning över den termiska nivån och är ofta lokaliserad till ett höjd-intervall av mindre än 20 km nära jonosfärens F-skiktstopp. Observationerna beskrivs väl av en modell med solitära vågor som propagerar transversellt genom radarstrålen. Två fall av lokaliserade jonlinjeförstärkningar visas sammanfalla med att norrskensbågar driver genom radarstrålen. I samband med bågarnas passage uppmäts stora gradienter i jontemperatur, vilket visas skapa tillräckligt kraftiga hastighetsskjuvningar för att Kelvin-Helmholtz-instabiliteter ska tillåtas växa. De observerade jonlinjeförstärkningarna tolkas i skenet av den lågfrekventa turbulensen som är kopplad till dessa instabiliteter.
|
Page generated in 0.0455 seconds