• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EVALUATION OF INTERPOLATION AND REGISTRATION TECHNIQUES IN MAGNETIC RESONANCE IMAGE FOR ORTHOGONAL PLANE SUPER RESOLUTION RECONSTRUCTION

Mahmoudzadeh, Amir Pasha January 2012 (has links)
No description available.
2

Improved interpretation of brain anatomical structures in magnetic resonance imaging using information from multiple image modalities

Ghayoor, Ali 01 May 2017 (has links)
This work explores if combining information from multiple Magnetic Resonance Imaging (MRI) modalities provides improved interpretation of brain biological architecture as each MR modality can reveal different characteristics of underlying anatomical structures. Structural MRI provides a means for high-resolution quantitative study of brain morphometry. Diffusion-weighted MR imaging (DWI) allows for low-resolution modeling of diffusivity properties of water molecules. Structural and diffusion-weighted MRI modalities are commonly used for monitoring the biological architecture of the brain in normal development or neurodegenerative disease processes. Structural MRI provides an overall map of brain tissue organization that is useful for identifying distinct anatomical boundaries that define gross organization of the brain. DWI models provide a reflection of the micro-structure of white matter (WM), thereby providing insightful information for measuring localized tissue properties or for generating maps of brain connectivity. Multispectral information from different structural MR modalities can lead to better delineation of anatomical boundaries, but careful considerations should be taken to deal with increased partial volume effects (PVE) when input modalities are provided in different spatial resolutions. Interpretation of diffusion-weighted MRI is strongly limited by its relatively low spatial resolution. PVE's are an inherent consequence of the limited spatial resolution in low-resolution images like DWI. This work develops novel methods to enhance tissue classification by addressing challenges of partial volume effects encountered from multi-modal data that are provided in different spatial resolutions. Additionally, this project addresses PVE in low-resolution DWI scans by introducing a novel super-resolution reconstruction approach that uses prior information from multi-modal structural MR images provided in higher spatial resolution. The major contributions of this work include: 1) Enhancing multi-modal tissue classification by addressing increased PVE when multispectral information come from different spatial resolutions. A novel method was introduced to find pure spatial samples that are not affected by partial volume composition. Once detecting pure samples, we can safely integrate multi-modal information in training/initialization of the classifier for an enhanced segmentation quality. Our method operates in physical spatial domain and is not limited by the constraints of voxel lattice spaces of different input modalities. 2) Enhancing the spatial resolution of DWI scans by introducing a novel method for super-resolution reconstruction of diffusion-weighted imaging data using high biological-resolution information provided by structural MRI data such that the voxel values at tissue boundaries of the reconstructed DWI image will be in agreement with the actual anatomical definitions of morphological data. We used 2D phantom data and 3D simulated multi-modal MR scans for quantitative evaluation of introduced tissue classification approach. The phantom study result demonstrates that the segmentation error rate is reduced when training samples were selected only from the pure samples. Quantitative results using Dice index from 3D simulated MR scans proves that the multi-modal segmentation quality with low-resolution second modality can approach the accuracy of high-resolution multi-modal segmentation when pure samples are incorporated in the training of classifier. We used high-resolution DWI from Human Connectome Project (HCP) as a gold standard for super-resolution reconstruction evaluation to measure the effectiveness of our method to recover high-resolution extrapolations from low-resolution DWI data using three evaluation approaches consisting of brain tractography, rotationally invariant scalars and tensor properties. Our validation demonstrates a significant improvement in the performance of developed approach in providing accurate assessment of brain connectivity and recovering the high-resolution rotationally invariant scalars (RIS) and tensor property measurements when our approach was compared with two common methods in the literature. The novel methods of this work provide important improvements in tools that assist with improving interpretation of brain biological architecture. We demonstrate an increased sensitivity for volumetric and diffusion measures commonly used in clinical trials to advance our understanding of both normal development and disease induced degeneration. The improved sensitivity may lead to a substantial decrease in the necessary sample size required to demonstrate statistical significance and thereby may reduce the cost of future studies or may allow more clinical and observational trials to be performed in parallel.
3

Acquisition IRM optimisée en vue du dépistage du cancer du sein / Optimized MRI acquisition for breast cancer screening

Delbany, Maya 11 March 2019 (has links)
L’imagerie pondérée en diffusion (DWI) représente un outil prometteur pour augmenter la spécificité de l’IRM mammaire en vue du dépistage du cancer du sein. L’épaisseur de coupe pour une acquisition ayant un rapport signal sur bruit suffisant et couvrant les seins dans un temps compatible avec un examen clinique, reste égale ou supérieur à 3 mm, limitant la possibilité de dépistage. Dans ce travail, une méthode DWI isotrope a été développée pour obtenir des images haute résolution isotropes (1x1x1 mm3) couvrant entièrement les seins. Ces images sont obtenues en combinant : (i) une séquence à train de lecture segmenté (rs-EPI) qui correspond à plusieurs segments de lecture EPI avec écho navigation, permettant d’obtenir de hautes résolutions dans le plan, (ii) une stratégie de super-résolution (SR) consistant à acquérir trois jeux de données avec des coupes épaisses (3 mm) et des décalages de 1 mm dans le sens de coupe entre chaque acquisition et (iii) une méthode de reconstruction dédiée pour obtenir des données isotropes 1x1x1 mm3. Plusieurs schémas de reconstruction basés sur différentes régularisations ont été étudiés. La SR proposée a été comparée aux acquisitions natives de 1x1x1 mm3 sans algorithme SR sur huit sujets sains et des fantômes synthétiques. Pour valider la méthode SR, nous avons utilisé plusieurs méthodes : des simulations Monte-Carlo, des mesures de SNR et des métriques de netteté et enfin le coefficient de diffusion apparent (ADC). Ces validations ont aussi été confirmées par des mesures expérimentales sur fantômes contenant des objets de dimensions et diffusion calibrées. Un nouveau protocole de recherche clinique est proposé pour évaluer l’efficacité de la séquence de diffusion à haute résolution sur le dépistage d’un cancer mammaire, dans le but de remplacer la séquence de perfusion avec injection de produit de contraste utilisée en IRM mammaire. / Diffusion-weighted imaging (DWI) is a promising tool to increase the specificity of MRI for breast cancer screening. However, the field of view covering the breasts makes the DWI at high resolution difficult and the images obtained have low signal-to-noise ratios (SNR). The current DWI techniques are limited by the spatial resolution, mainly a slice thickness greater than or equal to 3 mm. In this work, an isotropic DWI method was developed to obtain high resolution isotropic images (1x1x1 mm3) covering the entire breast. These images are obtained by combining: (i) a readout-segmented DW-EPI sequence (rs-EPI), with several segments of k-space and echo navigator providing high in-plane resolution, (ii) a super-resolution (SR) strategy, which consists of acquiring three datasets with thick slices (3 mm) and 1mm-shifts in the slice direction, (iii) and combining them into a 1x1x1 mm3 dataset using a dedicated reconstruction. Several SR reconstruction schemes were investigated, based on different regularizations. The proposed SR strategy was compared to native 1x1x1 mm3 acquisitions (i.e. with 1 mm slice thickness) on eight healthy subjects, and synthetics phantoms. To validate the SR method, we used several methods: Monte Carlo simulations, SNR measurements and sharpness metrics, the apparent diffusion coefficient (ADC) values in normal breast tissue and breast diffusion/resolution phantom were also compared. A new clinical research protocol is proposed to evaluate the effectiveness of the high resolution diffusion sequence on breast cancer screening. The aim of this protocol is to replace the contrast-enhanced perfusion by the diffusion sequence for screening.

Page generated in 0.1678 seconds