Spelling suggestions: "subject:"supervised classification"" "subject:"supervised 1classification""
71 |
Interpretação de imagens multitemporais de sensoriamento remoto. / Interpretation of multitemporal remote sensing image.Andrei Olak Alves 01 June 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Estudos multitemporais de dados de sensoriamento remoto dedicam-se ao mapeamento temático de uso da terra em diferentes instâncias de tempo com o objetivo de identificar as mudanças ocorridas em uma região em determinado período. Em sua maioria, os trabalhos de classificação automática supervisionada de imagens de sensoriamento remoto não utilizam um modelo de transformação temporal no processo de classificação. Pesquisas realizadas na última década abriram um importante precedente ao comprovarem que a utilização de um modelo de conhecimento sobre a dinâmica da região (modelo de transformação temporal), baseado em Cadeias de Markov Fuzzy (CMF), possibilita resultados superiores aos produzidos pelos classificadores supervisionados monotemporais. Desta forma, o presente trabalho enfoca um dos aspectos desta abordagem pouco investigados: a combinação de CMF de intervalos de tempo curtos para classificar imagens de períodos longos. A área de estudo utilizada nos experimentos é um remanescente florestal situado no município de Londrina-PR e que abrange todo o limite do Parque Estadual Mata dos Godoy. Como dados de entrada, são utilizadas cinco imagens do satélite Landsat 5 TM com intervalo temporal de cinco anos. De uma forma geral, verificou-se, a partir dos resultados experimentais, que o uso das Cadeias de Markov Fuzzy contribuiu significativamente para a melhoria do desempenho do processo de classificação automática em imagens orbitais multitemporais, quando comparado com uma classificação monotemporal. Ainda, pôde-se observar que as classificações com base em matrizes estimadas para períodos curtos sempre apresentaram resultados superiores aos das classificações com base em matrizes estimadas para períodos longos. Também, que a superioridade da estimação direta frente à extrapolação se reduz com o aumento da distância temporal. Os resultados do presente trabalho poderão servir de motivação para a criação de sistemas automáticos de classificação de imagens multitemporais. O potencial de sua aplicação se justifica pela aceleração do processo de monitoramento do uso e cobertura da terra, considerando a melhoria obtida frente a classificações supervisionadas tradicionais.
|
72 |
Diagn?stico da degrada??o ambiental no munic?pio de Areia Branca-RN por geotecnologias / Diagnosis of environmental degradation in the city of Areia Branca-RN by geotechnologySilva, Gabriella Cynara Minora da 25 February 2013 (has links)
Made available in DSpace on 2014-12-17T15:55:04Z (GMT). No. of bitstreams: 1
GabriellaCMS_DISSERT.pdf: 3451606 bytes, checksum: 1ee33015b3633fb79771b6160bff6a6c (MD5)
Previous issue date: 2013-02-25 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The municipality of Areia Branca is within the mesoregion of West Potiguar and within the
microregion of Mossor?, covering an area of 357,58 km2. Covering an area of weakness in
terms of environmental, housing, together with the municipality of Grossos-RN, the estuary
of River Apodi-Mossor?. The municipality of Areia Branca has historically suffered from a
lack of planning regarding the use and occupation of land as some economic activities,
attracted by the extremely favorable natural conditions, have exploited their natural resources
improperly. The aim of this study is to quantify and analyze the environmental degradation in
the municipality. Thus initially was performed a characterization of land use using remote
sensing, geoprocessing and geographic information system GIS in order to generate data
and information on the municipal scale, which may serve as input to the environmental
planning and land use planning in the region. From this perspective, were used a Landsat 5
image TM sensor for the year 2010. In the processing of this image was used SPRING 5.2
and applied a supervised classification using the classifier regions, which was employed
Bhattacharya Distance method with a threshold at 30%. Thus was obtained the land use map
that was analyzed the spatial distribution of different types of the use that is occurring in the
city, identifying areas that are being used incorrectly and the main types of environmental
degradation. And further, were applied the methodology proposed by Beltrame (1994),
Physical Diagnosis Conservationist under some adaptations for quantifying the level of
degradation or conservation study area. As results, the indexes were obtained for the
parameters in the proposed methodology, allowing quantitatively analyze the degradation
potential of each sector. From this perspective, considering a scale of 0 to 100, sector A and
sector B had value 31.20 units of risk of physical deterioration. And the C sector, has shown
its value - 34.64 units degradation risk and should be considered a priority in relation to the
achievement of conservation actions / O munic?pio de Areia Branca-RN est? inserido na mesorregi?o Oeste Potiguar e na
microrregi?o de Mossor?, abrangendo uma ?rea de 357,58 km2. Compreende uma ?rea de
fragilidade do ponto de vista ambiental, pois abriga, juntamente com o munic?pio de Grossos-
RN, o estu?rio do rio Apodi-Mossor?. O munic?pio de Areia Branca vem sofrendo
historicamente com a falta de planejamento no tocante ao uso e ocupa??o do solo, uma vez
que algumas atividades econ?micas, atra?das pelas condi??es naturais favor?veis, t?m
explorado os recursos naturais de forma inadequada. O objetivo deste estudo ? quantificar e
analisar a degrada??o ambiental no referido munic?pio. Para isso, inicialmente foi realizada
uma caracteriza??o do uso do solo, utilizando sensoriamento remoto, geoprocessamento e um
sistema de informa??es geogr?ficas - SIG, visando gerar dados e informa??es na escala
municipal, que possam servir de subs?dio para o planejamento ambiental e o ordenamento
territorial da regi?o. Nessa perspectiva, utilizou-se uma imagem Landsat 5, sensor TM
referente ao ano de 2010. No processamento desta imagem foi utilizado o SPRING 5.2 e
aplicado uma classifica??o supervisionada atrav?s do classificador por regi?es, onde foi
empregado o m?todo Bhattacharya Distance com um limiar 30%. Com isso foi obtido o mapa
de uso do solo a partir do qual analisou-se a distribui??o espacial dos diferentes tipos de uso
que ocorrem no munic?pio, identificando ?reas que est?o sendo utilizadas de maneira incorreta
e os principais tipos de degrada??o ambiental. Em prosseguimento, aplicou-se a metodologia
proposta por Beltrame (1994), o Diagn?stico F?sico-Conservacionista, sob algumas
adapta??es, para obter a quantifica??o do n?vel de degrada??o ou conserva??o da ?rea de
estudo. Como resultados, foram obtidos os ?ndices para os par?metros propostos na
metodologia, permitindo analisar quantitativamente o potencial de degrada??o de cada setor.
Nessa perspectiva, considerando uma escala de 0 a 100, o setor A e o setor B apresentaram
valor 31,20 unidades de risco de degrada??o f?sica. E o setor C, demonstrou valor 34,64
unidades de risco de degrada??o, devendo ser considerado prioridade no tocante ? realiza??o
de a??es conservacionistas
|
73 |
Interpretação de imagens multitemporais de sensoriamento remoto. / Interpretation of multitemporal remote sensing image.Andrei Olak Alves 01 June 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Estudos multitemporais de dados de sensoriamento remoto dedicam-se ao mapeamento temático de uso da terra em diferentes instâncias de tempo com o objetivo de identificar as mudanças ocorridas em uma região em determinado período. Em sua maioria, os trabalhos de classificação automática supervisionada de imagens de sensoriamento remoto não utilizam um modelo de transformação temporal no processo de classificação. Pesquisas realizadas na última década abriram um importante precedente ao comprovarem que a utilização de um modelo de conhecimento sobre a dinâmica da região (modelo de transformação temporal), baseado em Cadeias de Markov Fuzzy (CMF), possibilita resultados superiores aos produzidos pelos classificadores supervisionados monotemporais. Desta forma, o presente trabalho enfoca um dos aspectos desta abordagem pouco investigados: a combinação de CMF de intervalos de tempo curtos para classificar imagens de períodos longos. A área de estudo utilizada nos experimentos é um remanescente florestal situado no município de Londrina-PR e que abrange todo o limite do Parque Estadual Mata dos Godoy. Como dados de entrada, são utilizadas cinco imagens do satélite Landsat 5 TM com intervalo temporal de cinco anos. De uma forma geral, verificou-se, a partir dos resultados experimentais, que o uso das Cadeias de Markov Fuzzy contribuiu significativamente para a melhoria do desempenho do processo de classificação automática em imagens orbitais multitemporais, quando comparado com uma classificação monotemporal. Ainda, pôde-se observar que as classificações com base em matrizes estimadas para períodos curtos sempre apresentaram resultados superiores aos das classificações com base em matrizes estimadas para períodos longos. Também, que a superioridade da estimação direta frente à extrapolação se reduz com o aumento da distância temporal. Os resultados do presente trabalho poderão servir de motivação para a criação de sistemas automáticos de classificação de imagens multitemporais. O potencial de sua aplicação se justifica pela aceleração do processo de monitoramento do uso e cobertura da terra, considerando a melhoria obtida frente a classificações supervisionadas tradicionais.
|
74 |
Ferramenta computacional para apoio ao gerenciamento e à classificação de sementes de soja submetidas ao teste de tetrazólio / Computing tool to support management and classification of soy seeds submitted to tetrazolium testRocha, Davi Marcondes 07 December 2016 (has links)
Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2017-09-25T14:47:50Z
No. of bitstreams: 1
Davi_Rocha2017.pdf: 3573661 bytes, checksum: 8912d0785316cee5fdd46712b6f23d78 (MD5) / Made available in DSpace on 2017-09-25T14:47:50Z (GMT). No. of bitstreams: 1
Davi_Rocha2017.pdf: 3573661 bytes, checksum: 8912d0785316cee5fdd46712b6f23d78 (MD5)
Previous issue date: 2016-12-07 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná (FA) / Production and use of high quality seeds are important factors for the soybean farming. Therefore the quality control system in the seed industry must be reliable, accurate and fast. Seed technology research has been striving to develop or improve tests to enable seed quality evaluation. Tetrazolium test, besides evaluating the viability and vigor of the seeds, provides information about the potencial causing agents of quality reduction. Even though not using expensive instruments and reagents, the test requires a well-trained seed analyst, and the test’s accuracy depends on their knowledge about the all involved techniques and procedures, including the subjectivity of the observer. Therefore, the objective of the present research was to develop a computational tool that could minimize the implicit subjectivity in the test, contributing to increase information credibility and ensure the accuracy results. This tool allows, by tetrazolium test images, to identify seeds damage, as well as their location and extension, making the interpretation less subjective. From the feature extraction data in digital images of tetrazolium test, supervised classification algorithms were applied to do segmentation in the images, generating a classified image. The proposed system was tested using a selection of samples to training the classifier model and, from this model, the images classification of the tetrazolium test, to extract information about the seeds damage. The system allowed, in addition to an easier way for damages identification in the tetrazolium test images, the extraction of accurate information on displayed damage and achieve the control of the analyzed samples. The classifier performed the assignment of the predetermined categories efficiently for non-present data training set, with 96.6% of correctly classified instances and Kappa index of 0.95%, making the system a supplementary tool in decision making for the tetrazolium test. / A produção e a utilização de sementes de alta qualidade são fatores de importância para o cultivo da soja. Para isso, o sistema de controle de qualidade na indústria de sementes deve ser confiável, preciso e rápido. A pesquisa em tecnologia de sementes tem se esforçado em desenvolver ou aprimorar testes que possibilitem a avaliação da qualidade das sementes. O teste de tetrazólio, além de avaliar a viabilidade e o vigor de sementes, fornece informações sobre possíveis agentes causadores da redução de sua qualidade. Embora não se utilize de instrumentos e reagentes caros, o teste requer um analista de sementes bem treinado, sendo que a precisão do mesmo depende do conhecimento de todas as técnicas e procedimentos envolvidos, devendo-se considerar a subjetividade do observador. Sendo assim, o objetivo desta pesquisa foi desenvolver uma ferramenta computacional que minimizasse a subjetividade implícita na realização do teste, contribuindo para gerar maior credibilidade nas informações e garantindo precisão nos resultados. Esta ferramenta permite, a partir de imagens do teste de tetrazólio, realizar a identificação dos danos presentes nas sementes, bem como sua localização e sua extensão nos tecidos, tornando a interpretação menos subjetiva. A partir da extração de dados de características das imagens digitais do teste de tetrazólio, foram aplicados algoritmos de classificação supervisionada para realizar a segmentação destas imagens, produzindo uma imagem classificada. O sistema proposto foi testado utilizando a seleção de amostras para treino do modelo classificador e, a partir deste modelo, a classificação das imagens do teste de tetrazólio, para extração de informações sobre os danos verificados nas sementes. O sistema permitiu, além da identificação dos danos nas imagens do teste de tetrazólio de forma facilitada, a extração de informações mais seguras sobre os danos presentes e realizar o controle das amostras analisadas. O classificador realizou a atribuição das classes predeterminadas de forma eficiente para dados não presentes no conjunto de treinamento, com 96,6% de instâncias classificadas corretamente e Índice Kappa de 0,95%, tornando o sistema uma ferramenta suplementar na tomada de decisão para o teste de tetrazólio.
|
75 |
Développement de modèles spécifiques aux séquences génomique virales / Developing viral genomic data-specific classification modelsSchmitt, Louise-Amelie 19 July 2017 (has links)
Le séquençage ADN d'échantillons complexes contenant plusieurs espèces est une technique de choix pour étudier le paysage viral d'un milieu donné. Or les génomes viraux sont difficiles à identifier, de par leur extrême variabilité et la relation étroite qu'ils entretiennent avec leurs hôtes. Nous proposons de nouvelles pistes de recherche pour apporter une solution spécifique aux séquences virales afin de répondre au besoin d'identification pour lequel les solutions génériques existantes n'apportent pas de réponse satisfaisante. / DNA sequencing of complex samples containing various living species is a choice approach to study the viral landscape of a given environment. Viral genomes are hard to identify due to their extreme variability and the tight relationship they have with their hosts. We hereby provide new leads for the development of a virusesspecific solution to the need for accurate identification that hasn't found a satisfactory solution in the existing universal software so far.
|
76 |
Contributions à la détection et au diagnostic de fautes dans les systèmes par réseaux Bayésiens / Contributions to fault detection and diagnosis in systems by Bayesian networksAtoui, Mohamed Amine 29 September 2015 (has links)
Les fautes systèmes peuvent conduire à des conséquences sérieuses pour l’humain, l’environnement et le matériel. Or, y remédier peut s’avérer coûteux voire même dangereux. Ainsi, afin d’éviter ces situations, il est devenu essentiel pour les systèmes complexes modernes de détecter et d’identifier tout changement dans leur fonctionnement nominal avant que cela ne devienne critique. De ce fait, plusieurs méthodes de détection et de diagnostic ont été proposées ou améliorées durant les dernières décennies. Parmi ces méthodes, celles présentant un fort intérêt se basent sur un outil statistique et probabiliste nommé réseau Bayésien. Toutefois, la majorité d’entre elles ne tiennent pas compte du risque de fausse alarme dans leur prise de décision. L’intérêt de cette thèse est alors d’introduire sous réseau Bayésien des limites probabilistes permettant le respect d’un niveau de signification considéré. Plus exactement, nous proposons une modélisation des statistiques quadratiques et les limites leurs correspondant sur réseau Bayésien. Ceci nous permet de généraliser sous réseau Bayésien des schémas de détection de fautes comme par exemple ceux basés sur l’analyse en composantes principale. Cette modélisation nous permet également de proposer une famille de réseaux Bayésiens permettant de faire de la détection et du diagnostic de façon simultanée, tout en tenant compte d’un rejet de distance. Enfin, nous proposons un cadre probabiliste permettant d’unifier les différents réseaux Bayésiens pouvant être utilisés pour la détection ou le diagnostic de fautes. / Systems failures can potentially lead to serious consequences forhuman, environment and material, and sometimes fixing them could be expensive and even dangerous. Thus, in order to avoid these undesirable situations, it becomes very important and essential for modern complex systems to detect and identify any changes in their nominal operations before they become critical. To do so, several detection and diagnosis methods have been proposed or enhanced during the last decades. Among these methods, those with a great interest are based on a statistical and probabilistic tool named Bayesian network. However, the majority of these methods do not handle the risk of false alarm in their decision-making. The interest of this thesis is to introduce, under Bayesian network, probabilistic limits able to respect a given significance level. More precisely, we propose to model the quadratic statistics and their limits in Bayesian network. This allows us to generalize under Bayesian network fault detection schemes as those associated to the principal component analysis. This modeling allows us also to propose a family of Bayesian networks that can make detection and diagnosis simultaneously, while taking into account the distance rejection.Finally, we propose a probabilistic framework able to unify different BNs dedicated to the detection or diagnosis of systems faults.
|
77 |
A Deep Learning Approach To Vehicle Fault Detection Based On Vehicle BehaviorKhaliqi, Rafi, Iulian, Cozma January 2023 (has links)
Vehicles and machinery play a crucial role in our daily lives, contributing to our transportationneeds and supporting various industries. As society strives for sustainability, the advancementof technology and efficient resource allocation become paramount. However, vehicle faultscontinue to pose a significant challenge, leading to accidents and unfortunate consequences.In this thesis, we aim to address this issue by exploring the effectiveness of an ensemble ofdeep learning models for supervised classification. Specifically, we propose to evaluate the performance of 1D-CNN-Bi-LSTM and 1D-CNN-Bi-GRU models. The Bi-LSTM and Bi-GRUmodels incorporate a multi-head attention mechanism to capture intricate patterns in the data.The methodology involves initial feature extraction using 1D-CNN, followed by learning thetemporal dependencies in the time series data using Bi-LSTM and Bi-GRU. These models aretrained and evaluated on a labeled dataset, yielding promising results. The successful completion of this thesis has met the objectives and scope of the research, and it also paves the way forfuture investigations and further research in this domain.
|
78 |
ML enhanced interpretation of failed test resultPechetti, Hiranmayi January 2023 (has links)
This master thesis addresses the problem of classifying test failures in Ericsson AB’s BAIT test framework, specifically distinguishing between environment faults and product faults. The project aims to automate the initial defect classification process, reducing manual work and facilitating faster debugging. The significance of this problem lies in the potential time and cost savings it offers to Ericsson and other companies utilizing similar test frameworks. By automating the classification of test failures, developers can quickly identify the root cause of an issue and take appropriate action, leading to improved efficiency and productivity. To solve this problem, the thesis employs machine learning techniques. A dataset of test logs is utilized to evaluate the performance of six classification models: logistic regression, support vector machines, k-nearest neighbors, naive Bayes, decision trees, and XGBoost. Precision and macro F1 scores are used as evaluation metrics to assess the models’ performance. The results demonstrate that all models perform well in classifying test failures, achieving high precision values and macro F1 scores. The decision tree and XGBoost models exhibit perfect precision scores for product faults, while the naive Bayes model achieves the highest macro F1 score. These findings highlight the effectiveness of machine learning in accurately distinguishing between environment faults and product faults within the Bait framework. Developers and organizations can benefit from the automated defect classification system, reducing manual effort and expediting the debugging process. The successful application of machine learning in this context opens up opportunities for further research and development in automated defect classification algorithms. / Detta examensarbete tar upp problemet med att klassificera testfel i Ericsson AB:s BAIT-testramverk, där man specifikt skiljer mellan miljöfel och produktfel. Projektet syftar till att automatisera den initiala defekten klassificeringsprocessen, vilket minskar manuellt arbete och underlättar snabbare felsökning. Betydelsen av detta problem ligger i de potentiella tids- och kostnadsbesparingarna det erbjuder till Ericsson och andra företag som använder liknande testramar. Förbi automatisera klassificeringen av testfel, kan utvecklare snabbt identifiera grundorsaken till ett problem och vidta lämpliga åtgärder, vilket leder till förbättrad effektivitet och produktivitet. För att lösa detta problem använder avhandlingen maskininlärningstekniker. A datauppsättning av testloggar används för att utvärdera prestandan för sex klassificeringar modeller: logistisk regression, stödvektormaskiner, k-närmaste grannar, naiva Bayes, beslutsträd och XGBoost. Precision och makro F1 poäng används som utvärderingsmått för att bedöma modellernas prestanda. Resultaten visar att alla modeller presterar bra i klassificeringstest misslyckanden, uppnå höga precisionsvärden och makro F1-poäng. Beslutet tree- och XGBoost-modeller uppvisar perfekta precision-spoäng för produktfel, medan den naiva Bayes-modellen uppnår högsta makro F1-poäng. Dessa resultat belyser effektiviteten av maskininlärning när det gäller att exakt särskilja mellan miljöfel och produktfel inom Bait-ramverket. Utvecklare och organisationer kan dra nytta av den automatiska defektklassificeringen system, vilket minskar manuell ansträngning och påskyndar felsöknings-processen. De framgångsrik tillämpning av maskininlärning i detta sammanhang öppnar möjligheter för vidare forskning och utveckling inom automatiserade defektklassificeringsalgoritmer.
|
79 |
Transforming user data into user value by novel mining techniques for extraction of web content, structure and usage patterns. The Development and Evaluation of New Web Mining Methods that enhance Information Retrieval and improve the Understanding of User¿s Web Behavior in Websites and Social Blogs.Ammari, Ahmad N. January 2010 (has links)
The rapid growth of the World Wide Web in the last decade makes it the largest publicly accessible data source in the world, which has become one of the most significant and influential information revolution of modern times. The influence of the Web has impacted almost every aspect of humans' life, activities and fields, causing paradigm shifts and transformational changes in business, governance, and education. Moreover, the rapid evolution of Web 2.0 and the Social Web in the past few years, such as social blogs and friendship networking sites, has dramatically transformed the Web from a raw environment for information consumption to a dynamic and rich platform for information production and sharing worldwide. However, this growth and transformation of the Web has resulted in an uncontrollable explosion and abundance of the textual contents, creating a serious challenge for any user to find and retrieve the relevant information that he truly seeks to find on the Web. The process of finding a relevant Web page in a website easily and efficiently has become very difficult to achieve. This has created many challenges for researchers to develop new mining techniques in order to improve the user experience on the Web, as well as for organizations to understand the true informational interests and needs of their customers in order to improve their targeted services accordingly by providing the products, services and information that truly match the requirements of every online customer.
With these challenges in mind, Web mining aims to extract hidden patterns and discover useful knowledge from Web page contents, Web hyperlinks, and Web usage logs. Based on the primary kinds of Web data used in the mining process, Web mining tasks can be categorized into three main types: Web content mining, which extracts knowledge from Web page contents using text mining techniques, Web structure mining, which extracts patterns from the hyperlinks that represent the structure of the website, and Web usage mining, which mines user's Web navigational patterns from Web server logs that record the Web page access made by every user, representing the interactional activities between the users and the Web pages in a website. The main goal of this thesis is to contribute toward addressing the challenges that have been resulted from the information explosion and overload on the Web, by proposing and developing novel Web mining-based approaches. Toward achieving this goal, the thesis presents, analyzes, and evaluates three major contributions. First, the development of an integrated Web structure and usage mining approach that recommends a collection of hyperlinks for the surfers of a website to be placed at the homepage of that website. Second, the development of an integrated Web content and usage mining approach to improve the understanding of the user's Web behavior and discover the user group interests in a website. Third, the development of a supervised classification model based on recent Social Web concepts, such as Tag Clouds, in order to improve the retrieval of relevant articles and posts from Web social blogs.
|
80 |
Monitoring Urbanization in Sekondi-Takoradi, Ghana, using Multi-Temporal Sentinel-2 MSI Imagery and In-Situ Interviews / Övervakning av urbaniseringen i sekondi-takoradi, ghana, med hjälp av multi-temporal sentinel-2 msi imagery och intervjuer i fältLjungström Armah, William January 2023 (has links)
Rapid urbanization is taking place in Low-and middle-income countries (LMICs). Often there is not sufficient data monitoring the quick urban change. This study explores the use of machine learning classification within remote sensing to foster sustainable urban practices in a secondary city in an LMIC. The aim is to extract spatially detailed land cover data and investigate its temporal evolution from 2018 to 2021. Furthermore, targeted interviews with residents were conducted to gain an in-situ understanding of the land cover changes. The research reveals a trend of increased impervious surface in Sekondi-Takoradi, especially around the urban outskirts. Some patterns of densification can also be identified, predominantly in urban areas with a mix of impervious surfaces and vegetation. These findings reveal similar land cover change patterns as previous remote sensing studies, a decrease in vegetation, and an increase in impervious surfaces. The used method can be applied at a larger scale to monitor the urbanization of secondary cities in LMICs, a field that often is neglected. These insights can contribute to achieving the UN's 11th Sustainable Development Sustainable Cities and Communities.
|
Page generated in 0.1421 seconds