Spelling suggestions: "subject:"surfaceenhanced raman dpectroscopy"" "subject:"surfaceenhanced raman espectroscopy""
71 |
Sensing Interfacial Non-Faradaic and Faradaic Processes via Plasmonic-Enhanced Metallic Luminescence in Nano-OptoelectrodesZhao, Yuming 03 January 2024 (has links)
Metallic nanostructures supporting surface plasmon modes can concentrate optical fields, and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurements and is helpful in bioimaging, nano-thermometry, and chemical reaction monitoring applications. Despite increasing interest in nanoplasmonic metal luminescence, little attention has been paid to investigating its dependence on voltage modulation. Also, the hyphenated electrochemical surface-enhanced Raman spectroscopy (EC-SERS) technique typically ignores voltage-dependent spectral background information associated with nanoplasmonic metal luminescence due to limited mechanistic understanding and poor measurement reproducibility. In this thesis, we combine the experimental observations and theoretical study on dynamic Faradaic & non-Faradaic modulated nanoplasmonic metallic luminescence and molecular vibrational Raman from hotspots at the electrode-electrolyte interfaces using multiple novel nano-optoelectrodes. Our work represents a critical step toward the general application of nanoplasmonic metal luminescence signals in optical voltage biosensing, hybrid optical-electrical signal transduction, and interfacial electrochemical monitoring. / Master of Science / Understanding the non-Faradaic and Faradaic process pathway is crucial for unraveling reaction mechanisms, developing efficient catalysts, designing bionsensing methodology, energy conversion and cellular stimulator (1-7). Advances in spectroscopic techniques( 8, 9) and computational models (3, 10) have facilitated the investigation of the non-Faradic and Faradaic processes. Unlike bulk reactions, interfacial electrochemical reactions occur in nanometer-thin layers (3, 11), necessitating highly sensitive detection methods. A significant challenge is background interference from bulk electrolytes and electrodes, often obscuring weak signals from the interfacial region – traditional spectroelectrochemistry struggles to match the high temporal resolution requirement due to noise (12, 13). Surface plasmons have become a promising solution for enhancing the sensitivity of spectroelectrochemical techniques (14, 15). Surface plasmons are collective oscillations of electrons at the metal-dielectric interface, which can focus and intensify optical fields at the nanoscale (16), boosting diverse nonlinear emission signals, including fluorescence, Raman scattering, and harmonic generation (17-23). By utilizing surface plasmons, spectroelectrochemistry techniques have shown promise in detecting interfacial activities with high sensitivity. In this thesis, we introduce a pioneering dual-channel in situ EC-SERS methodology, which harnesses the synergy between plasmon-enhanced vibrational Raman scattering (PE-VRS) and plasmon-enhanced electronic Raman scattering (PE-ERS) interfacial signals to monitor and analyze the Faradaic and non-Faradaic process at the electrode-electrolyte interfaces.
|
72 |
Nanobiotechnology Enabled Environmental Sensing of Water and WastewaterKang, Seju 13 January 2023 (has links)
Many environmental compartments are acknowledged transmission routes for infectious diseases, antibiotic resistance, and anthropogenic pollution. The need for environmental sensing has consistently been stressed as a means to minimize public health threats caused by such contaminants. Many analytical detection techniques have been developed and applied for environmental sensing. However, these techniques are often reliant upon centralized facilities and require intensive resources. For these reasons their use can be challenging under resource-constrained conditions characterized by poor water, sanitation, and hygiene (WASH) services.
In this dissertation, we developed biotechnology- and/or nanotechnology-advanced analytical tools for environmental sensing that have potential for future application in regions with poor WASH services. First, loop-mediated isothermal amplification (LAMP) and nanopore sequencing were applied to develop assays for the detection of SARS-CoV-2, the causative agent of COVID-19, in wastewater samples. Second, surface-enhanced Raman spectroscopy (SERS) was applied for environmental detection of a range of analytes. Gold nanoparticle (AuNP)-based SERS substrates were fabricated by droplet evaporation-induced aggregation on a hydrophobic substrate. These SERS substrates were then applied for the detection of antibiotic resistance genes (ARGs) and other environmental contaminants (e.g., dye or hydrophobic organic contaminants). In a separate study, Au nanostructured SERS substrates were fabricated and applied for pH sensing in a range of environmental media. Finally, the environmental impact of an AuNP-based colorimetric detection assay was assessed via life cycle assessment. / Doctor of Philosophy / Environmental sensing is an important means to intervene against public health threats of infectious diseases and environmental contaminants. However, currently available analytical tools for environmental samples often require intensive resources that are not available in low- and middle-income countries. In this dissertation, we developed biotechnology and/or nanotechnology advanced analytical tools for environmental sensing that have potential future application applied under resource-constrained conditions. First, we applied loop-mediated isothermal amplification (LAMP) and nanopore sequencing to develop detection assays for SARS-CoV-2, the causative agent of COVID-19, in wastewater samples. Second, we applied surface-enhanced Raman spectroscopy (SERS) to develop assays for environmental analytes. We fabricated SERS substrates by evaporation-induced aggregation of gold nanoparticles (AuNPs) on a hydrophobic substrate and applied these for the detection of antibiotic resistance genes (ARGs) and other environmental contaminants. In addition, Au nanostructured SERS substrates were fabricated and applied for pH sensing in a range of environmental media. Finally, we used life cycle assessment to quantitatively evaluate the environmental impacts of an AuNP-based sensing applications.
|
73 |
Advancing Nanoplasmonics-enabled Regenerative Spatiotemporal Pathogen Monitoring at Bio-interfacesGarg, Aditya 09 May 2024 (has links)
Non-invasive and continuous spatiotemporal pathogen monitoring at biological interfaces (e.g., human tissue) holds promise for transformative applications in personalized healthcare (e.g., wound infection monitoring) and environmental surveillance (e.g., airborne virus surveillance). Despite notable progress, current receptor-based biosensors encounter inherent limitations, including inadequate long-term performance, restricted spatial resolutions and length scales, and challenges in obtaining multianalyte information. Surface-enhanced Raman spectroscopy (SERS) has emerged as a robust analytical method, merging the molecular specificity of Raman spectroscopy's vibrational fingerprinting with the enhanced detection sensitivity from strong light-matter interaction in plasmonic nanostructures. As a receptor-free and noninvasive detection tool capable of capturing multianalyte chemical information, SERS holds the potential to actualize bio-interfaced spatiotemporal pathogen monitoring. Nonetheless, several challenges must be addressed before practical adoption, including the development of plasmonic bio-interfaces, sensitive capture of multianalyte information from pathogens, regeneration of nanogap hotspots for long-term sensing, and extraction of meaningful information from spatiotemporal SERS datasets. This dissertation tackles these fundamental challenges. Plasmonic bio-interfaces were created using innovative nanoimprint lithography-based scalable nanofabrication methods for reliable bio-interfaced spatiotemporal measurements. These plasmonic bio-interfaces feature sensitive, dense, and uniformly distributed plasmonic transducers (e.g., plasmonic nano dome arrays, optically-coupled plasmonic nanodome and nanohole arrays, self-assembled nanoparticle micro patches) on ultra-flexible and porous platforms (e.g., biomimetic polymeric meshes, textiles). Using these plasmonic bio-interfaces, advancements were made in SERS signal transduction, machine-learning-enabled data analysis, and sensor regeneration. Large-area multianalyte spatiotemporal monitoring of bacterial biofilm components and pH was demonstrated in in-vitro biofilm models, crucial for wound biofilm diagnostics. Additionally, novel approaches for sensitive virus detection were introduced, including monitoring spectral changes during viral infection in living biofilms and direct detection of decomposed viral components. Spatiotemporal SERS datasets were analyzed using unsupervised machine-learning methods to extract biologically relevant spatiotemporal information and supervised machine-learning tools to classify and predict biological outcomes. Finally, a sensor regeneration method based on plasmon-induced nanocavitation was developed to enable long-term continuous detection in protein-rich backgrounds. Through continuous implementation of spatiotemporal SERS signal transduction, machine-learning-enabled data analysis, and sensor regeneration in a closed loop, our solution has the potential to enable spatiotemporal pathogen monitoring at the bio-interface. / Doctor of Philosophy / Continuous monitoring of pathogens within our bodies and surrounding environments is indispensable for various applications in personalized healthcare (e.g., monitoring wound infections) and environmental surveillance (e.g., airborne virus tracking). To accomplish this, we require sensors capable of seamlessly interfacing with biological systems, such as human tissue, and consistently providing pathogen-related information (e.g., spatial location and pathogen type) over prolonged periods. Our research relies on Surface-enhanced Raman spectroscopy (SERS) to address this challenge. SERS enables noninvasive sensing by providing unique fingerprints of molecules near the sensor's surface. SERS holds the potential to enable bio-interfaced spatiotemporal pathogen monitoring, but several challenges must be tackled before practical adoption. In this dissertation, we address various fundamental challenges in SERS, including constructing SERS devices that can seamlessly interface with biological systems while maintaining performance, sensitively capturing pathogen-related information, extracting meaningful insights from SERS datasets, and continuously regenerating the sensor surface to ensure long-term performance. We developed SERS devices capable of seamlessly interfacing with biological systems using innovative scalable nanofabrication methods. These devices contain sensitive, dense, and uniformly distributed SERS sensors on flexible and porous platforms, such as polymeric scaffolds and textiles. Leveraging these SERS devices, we made advancements in pathogen sensing, data analysis, and sensor regeneration. We demonstrated large-area spatiotemporal monitoring of biofilm components and pH in lab-grown biofilm models, critical for wound biofilm diagnostics. Additionally, we introduced novel approaches for sensitive virus detection, including monitoring changes in SERS signals during viral infection in living biofilms and directly detecting decomposed viral components. The SERS datasets were analyzed using machine learning models to extract biologically relevant spatial and temporal information, such as the spatial location of pathogen components and the temporal stage of pathogen growth, and to predict biological outcomes. Finally, we developed a sensor regeneration method to enable long-term continuous detection in complex backgrounds, such as blood. By continuously performing spatiotemporal pathogen sensing, data analysis, and sensor regeneration in a closed loop, our solution has the potential to realize bio-interfaced spatiotemporal pathogen monitoring.
|
74 |
Advanced Applications of Raman Spectroscopy for Environmental AnalysesLahr, Rebecca Halvorson 09 January 2014 (has links)
Due to an ever-increasing global population and limited resource availability, there is a constant need for detection of both natural and anthropogenic hazards in water, air, food, and material goods. Traditionally a different instrument would be used to detect each class of contaminant, often after a concentration or separation protocol to extract the analyte from its matrix. Raman spectroscopy is unique in its ability to detect organic or inorganic, airborne or waterborne, and embedded or adsorbed analytes within environmental systems. This ability comes from the inherent abilities of the Raman spectrometer combined with concentration, separation, and signal enhancement provided by drop coating deposition Raman (DCDR) and surface-enhanced Raman spectroscopy (SERS).
Herein the capacity of DCDR to differentiate between cyanotoxin variants in aqueous solutions was demonstrated using principal component analysis (PCA) to statistically demonstrate spectral differentiation. A set of rules was outlined based on Raman peak ratios to allow an inexperienced user to determine the toxin variant identity from its Raman spectrum. DCDR was also employed for microcystin-LR (MC-LR) detection in environmental waters at environmentally relevant concentrations, after pre-concentration with solid-phase extraction (SPE). In a cellulose matrix, SERS and normal Raman spectral imaging revealed nanoparticle transport and deposition patterns, illustrating that nanoparticle surface coating dictated the observed transport properties. Both SERS spectral imaging and insight into analyte transport in wax-printed paper microfluidic channels will ultimately be useful for microfluidic paper-based analytical device (𝜇PAD) development. Within algal cells, SERS produced 3D cellular images in the presence of intracellularly biosynthesized gold nanoparticles (AuNP), documenting in detail the molecular vibrations of biomolecules at the AuNP surfaces. Molecules involved in nanoparticle biosynthesis were identified at AuNP surfaces within algal cells, thus aiding in mechanism elucidation.
The capabilities of Raman spectroscopy are endless, especially in light of SERS tag design, coordinating detection of analytes that do not inherently produce strong Raman vibrations. The increase in portable Raman spectrometer availability will only facilitate cheaper, more frequent application of Raman spectrometry both in the field and the lab. The tremendous detection power of the Raman spectrometer cannot be ignored. / Ph. D.
|
75 |
Visualization, Characterization, and Analysis of Gold Nanoparticles Fate and Transport in Aqueous Porous Media Environment with Advanced Photonics TechniqueChan, Matthew Yunho 27 April 2017 (has links)
Increased proliferation of nanotechnology has led to concerns regarding its implication to the water environment. Gold nanoparticles (AuNP) were used as a model nanomaterial to investigate the fate and dynamics of nanoparticles in the complex water environment. A column study was performed to examine the fate and transport of gold nanoparticles with two different coatings in porous media. The resulting data suggested that gold nanoparticles aggregate significantly in the porespace of the column interior, a finding that is not predicted by traditional colloidal filtration theory or Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Surface-enhanced Raman spectroscopy (SERS) was developed as a new technique to investigate AuNP aggregation in water with varying salt levels. The SERS technique proved valuable as an analytical technique, elucidating information about aggregation as well as AuNP surface interactions with dissolved halides in water. A thorough investigation examining Aunt aggregation with monovalent and divalent salts utilizing SERS, ultraviolet-visible light (UV-Vis) spectroscopy, and dynamic light scattering (DLS) was conducted. Each technique provided data describing different aspects of the dynamic behavior of AuNPs in complex water environments. Results suggest that in addition to attractive and repulsive interactions described by DLVO theory, chemical interactions between the AuNP surface and dissolved halides were also a significant driving force for aggregation and other transformative behaviors of AuNPs in water. The SERS technique developed in this work was shown to be a viable tool to help unveil the vastly complex dynamics of nanomaterial in the water environment. / Ph. D. / Nanotechnology is everywhere. It is in our smartphones, in our food, in our clothes, even if we do not recognize it is there. And this is a good thing, because nanotechnology – that is, technology that utilizes nanomaterials – can provide things that traditional technology often cannot. This is all because many nanomaterials have “superpowers” due to their size range: they are generally larger than what we may think of when we think of chemical molecules, but much smaller than macroscopic materials whose behaviors can be approximated by classic physics and chemistry. For example, we all know that gold has a shiny yellow metallic appearance. However, if we make little particles of gold – and these are going to be very tiny, with diameters about 10,000 times smaller than that of a strand of human hair (but about 100 times larger than what we would typically think of as molecules of chemicals) – and put them in water, the resulting mixture will be ruby-red like wine. One of the “superpowers” these gold nanoparticles possess is that they interact with light in a very different way than bulk gold. Currently, researchers in the biomedical field are producing promising work employing these particles in nextgeneration imaging, and much more. In this study, we were interested in what happens to these materials once they are released to the water environment. Because of the “superpowers” these gold nanoparticles possess, we really do not know how they will behave once they are released to either surface or groundwater because the physics and chemistry of those environments can be quite variable and complex. In this work, we have shown that traditional assumptions about particulate contaminants in water systems do not necessarily hold for gold nanoparticles. Laboratory simulations show that interactions between these particles and the surrounding environment that were once thought to be negligible, are in fact highly significant. As our title suggests, we are developing new and advanced “photonics” methods to help us discover the dynamic complexity dictating the fate of these gold nanoparticles once they are in the water environment. Photonics methods are techniques that employ light as a probing tool. These techniques use a well understood laser light source that is directed towards the particles in a water environment, and we then measure changes in the scattered light after it has interacted with the particles. The technique we have employed here (called surface-enhanced Raman spectroscopy, or SERS) simultaneously provides us information about different behaviors of gold nanoparticles in water, including how they may aggregate (that is, stick to one another and form big clumps) and how they interact with existing dissolved chemicals that may be present in the natural water environment. By pairing this method with other existing methods, we were able to paint a more complete picture of how these nanoparticles behave in the water environment, and we can answer some questions as to why they do not follow some previously held assumptions. In the end, the work in this dissertation will help future scientists continue to unlock the complexity of nanomaterial fate and dynamics in the water environment.
|
76 |
Development of a Temperature Controlled Cell for Surface Enhanced Raman Spectroscopy for in situ Detection of GasesAppelblad, André January 2014 (has links)
This work describes a master’s thesis in engineering physics at Umeå University carried out during the spring semester of 2014. In the thesis the student has constructed and tested a temperature controlled cell for cooling/heating of surface-enhanced-Raman-spectroscopy (SERS) substrates for rapid detection of volatile substances. The thesis was carried out at the Swedish Defence Research Agency (FOI) in Umeå, Sweden. A Linkam Scientific Instruments TS1500 cell was equipped with a Peltier element for cooling/heating and a thermistor temperature sensor. A control system was constructed, based on an Arduino Uno microcontroller board and a pulse-width-modulated (PWM) H-bridge motor driver to control the Peltier element using a proportional-integral (PI) control algorithm. The temperature controlled cell was able to regulate the temperature of a SERS substrate within -15 to +110 °C and maintain the temperature over prolonged periods at ±0.22 °C of the set point temperature. Gas phase of 2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethane (isoflurane) was flowed through the cell and SERS spectra were collected at different temperatures and concentrations. This test showed that the signal is increased when the substrate is cooled and reversibly decreased when the substrate was heated. Keywords: temperature control, Raman scattering, surface enhanced Raman spectroscopy SERS, SERS substrate, volatile substances, Peltier module, thermistor, PWM, H-bridge, PI(D) control. / Detta dokument beskriver ett examensarbete för civilingenjörsexamen i teknisk fysik vid Umeå Universitet som utförts under vårterminen 2014. I examensarbetet har en kyl-/värmecell för temperaturkontroll av substratytor för ytförstärkt ramanspektroskopi (SERS) för snabb detektion av farliga flyktiga ämnen konstruerats och testats. Arbetet utfördes vid Totalförsvarets forskningsinstitut (FOI) i Umeå, Sverige. Utgångspunkten var ett Linkam Scientific Instruments TS1500 mikroskopsteg, vilket utrustades med ett Peltierelement för kylning/värmning och en termistor för temperaturövervakning. Ett styrsystem baserat på ett Arduino Uno mikrostyrenhetskort konstruerades med ett motordrivkort (H-brygga) vilket använder pulsbreddsmodulering (PWM) för att reglera spänningen till Peltierelementet utifrån en PI-regulator. Den färdiga cellen klarade att reglera temperaturen på ett SERS-substrat i ett temperaturspann på ungefär -15 till +110 °C med en temperaturstabilitet på ±0.22 °C av måltemperaturen. Cellen testades sedan på flyktiga ämnen för att visa dess funktion. Difluorometyl-2,2,2-trifluoro-1-kloroetyleter (isofluran) i gasfas, med instrumentluft som bärargas, flödades genom cellen och SERS-spektra erhölls vid olika koncentrationer och temperaturer. Vid samtliga koncentrationer visades att lägre temperatur ger ökad signalstyrka. När ytan sedan värmdes upp sjönk signalen reversibelt tillbaka till ursprungsvärdet. Nyckelord: temperaturkontroll, ytförstärkt ramanspektroskopi, SERS, flyktiga ämnen, Peltierelement, thermistor, PWM, H-brygga, PI(D)-regulator.
|
77 |
Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystalsSheremet, E., Milekhin, A. G., Rodriguez, R. D., Weiss, T., Nesterov, M., Rodyakina, E. E., Gordan, O. D., Sveshnikova, L. L., Duda, T. A., Gridchin, V. A., Dzhagan, V. M., Hietschold, M., Zahn, D. R. T. 27 February 2015 (has links) (PDF)
Surface- and tip-enhanced resonant Raman scattering (resonant SERS and TERS) by optical phonons in a monolayer of CdSe quantum dots (QDs) is demonstrated. The SERS enhancement was achieved by employing plasmonically active substrates consisting of gold arrays with varying nanocluster diameters prepared by electron-beam lithography. The magnitude of the SERS enhancement depends on the localized surface plasmon resonance (LSPR) energy, which is determined by the structural parameters. The LSPR positions as a function of nanocluster diameter were experimentally determined from spectroscopic micro-ellipsometry, and compared to numerical simulations showing good qualitative agreement. The monolayer of CdSe QDs was deposited by the Langmuir–Blodgett-based technique on the SERS substrates. By tuning the excitation energy close to the band gap of the CdSe QDs and to the LSPR energy, resonant SERS by longitudinal optical (LO) phonons of CdSe QDs was realized. A SERS enhancement factor of 2 × 10<sup>3</sup> was achieved. This allowed the detection of higher order LO modes of CdSe QDs, evidencing the high crystalline quality of QDs. The dependence of LO phonon mode intensity on the size of Au nanoclusters reveals a resonant character, suggesting that the electromagnetic mechanism of the SERS enhancement is dominant. Finally, the resonant TERS spectrum from CdSe QDs was obtained using electrochemically etched gold tips providing an enhancement on the order of 10<sup>4</sup>. This is an important step towards the detection of the phonon spectrum from a single QD. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
78 |
Design, characterisation and biosensing applications of nanoperiodic plasmonic metamaterials / Conception, caractérisation et applications de métamatériaux nanopériodiques plasmoniques pour biocapteursDanilov, Artem 11 April 2018 (has links)
Cette thèse considère de nouvelles architectures prometteuses des métamatériaux plasmoniques pour biosensing, comprenant: (I) des réseaux périodiques 2D de nanoparticules d'Au, qui peuvent supporter des résonances des réseaux de surface couplées de manière diffractive; (II) Reseaux 3D à base de cristaux plasmoniques du type d'assemblage de bois. Une étude systématique des conditions d'excitation plasmonique, des propriétés et de la sensibilité à l'environnement local dans ces géométries métamatérielles est présentée. On montre que de tels réseaux peuvent combiner une très haute sensibilité spectrale (400 nm / RIU et 2600 nm / RIU, ensemble respectivement) et une sensibilité de phase exceptionnellement élevée (> 105 deg./RIU) et peuvent être utilisés pour améliorer l'état actuel de la technologie de biosensing the-art. Enfin, on propose une méthode de sondage du champ électrique excité par des nanostructures plasmoniques (nanoparticules uniques, dimères). On suppose que cette méthode aidera à concevoir des structures pour SERS (La spectroscopie du type Raman à surface renforcée), qui peut être utilisée comme une chaîne d'information supplémentaire à un biocapteur de transduction optique. / This thesis consideres novel promissing architechtures of plasmonic metamaterial for biosensing, including: (I) 2D periodic arrays of Au nanoparticles, which can support diffractively coupled surface lattice resonances; (II) 3D periodic arrays based on woodpile-assembly plasmonic crystals, which can support novel delocalized plasmonic modes over 3D structure. A systematic study of conditions of plasmon excitation, properties and sensitivity to local environment is presented. It is shown that such arrays can combine very high spectral sensitivity (400nm/RIU and 2600 nm/RIU, respectively) and exceptionally high phase sensitivity (> 105 deg./RIU) and can be used for the improvement of current state-of-the-art biosensing technology. Finally, a method for probing electric field excited by plasmonic nanostructures (single nanoparticles, dimers) is proposed. It is implied that this method will help to design structures for SERS, which will later be used as an additional informational channel for biosensing.
|
79 |
Application of Raman and Fluorescence Spectroscopy to Single Chromatographic BeadsLarsson, Mina January 2005 (has links)
<p>Chromatography is a powerful technique, essential in chemical analyses and preparative separation in industry and research. Many different kinds of chromatographic material are needed, due to the large variety of applications. Detailed methods of characterisation are needed to design new chromatographic materials and understand their properties. In this thesis, confocal Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) have been applied to micrometer-size chromatographic beads, for which these techniques have not been used earlier. New methodology, optimized for use with the chromatographic beads, has been developed and evaluated. </p><p>Confocal spectroscopy has been used to determine distributions of functional groups within single chromatographic beads. This distribution is of great importance in determining the chromatographic properties, since the material is porous and the solute molecules can diffuse inside the beads. Most of the confocal experiments have been performed with Raman spectroscopy; fluorescence spectroscopy, using Nd<sup>3+</sup> ions or dye-labelled proteins as fluorescence probes, has been used for comparison. </p><p>The concentration of adsorbed analytes is very low within the beads. SERS was therefore used to enhance the Raman signal. SERS-active surfaces were prepared by incorporating gold nano-particles into the interior of the bead. TEM measurements showed that the gold nano-particles could be observed throughout, and it was possible to record analyte spectra from different positions within the bead. Enhanced spectra could be obtained both for small test molecules and for larger bio-molecules, although the spectra for the smaller analytes were much more intense.</p>
|
80 |
Application of Raman and Fluorescence Spectroscopy to Single Chromatographic BeadsLarsson, Mina January 2005 (has links)
Chromatography is a powerful technique, essential in chemical analyses and preparative separation in industry and research. Many different kinds of chromatographic material are needed, due to the large variety of applications. Detailed methods of characterisation are needed to design new chromatographic materials and understand their properties. In this thesis, confocal Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) have been applied to micrometer-size chromatographic beads, for which these techniques have not been used earlier. New methodology, optimized for use with the chromatographic beads, has been developed and evaluated. Confocal spectroscopy has been used to determine distributions of functional groups within single chromatographic beads. This distribution is of great importance in determining the chromatographic properties, since the material is porous and the solute molecules can diffuse inside the beads. Most of the confocal experiments have been performed with Raman spectroscopy; fluorescence spectroscopy, using Nd3+ ions or dye-labelled proteins as fluorescence probes, has been used for comparison. The concentration of adsorbed analytes is very low within the beads. SERS was therefore used to enhance the Raman signal. SERS-active surfaces were prepared by incorporating gold nano-particles into the interior of the bead. TEM measurements showed that the gold nano-particles could be observed throughout, and it was possible to record analyte spectra from different positions within the bead. Enhanced spectra could be obtained both for small test molecules and for larger bio-molecules, although the spectra for the smaller analytes were much more intense.
|
Page generated in 0.0882 seconds