• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 403
  • 54
  • 34
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 12
  • 11
  • 10
  • 5
  • 4
  • Tagged with
  • 727
  • 727
  • 82
  • 72
  • 72
  • 66
  • 50
  • 46
  • 46
  • 43
  • 41
  • 40
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Ultrahigh Vacuum Studies of the Fundamental Interactions of Chemical Warfare Agents and Their Simulants with Amorphous Silica

Wilmsmeyer, Amanda Rose 13 September 2012 (has links)
Developing a fundamental understanding of the interactions of chemical warfare agents (CWAs) with surfaces is essential for the rational design of new sorbents, sensors, and decontamination strategies. The interactions of chemical warfare agent simulants, molecules which retain many of the same chemical or physical properties of the agent without the toxic effects, with amorphous silica were conducted to investigate how small changes in chemical structure affect the overall chemistry. Experiments investigating the surface chemistry of two classes of CWAs, nerve and blister agents, were performed in ultrahigh vacuum to provide a well-characterized system in the absence of background gases. Transmission infrared spectroscopy and temperature-programmed desorption techniques were used to learn about the adsorption mechanism and to measure the activation energy for desorption for each of the simulant studied. In the organophosphate series, the simulants diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), dimethyl chlorophosphate (DMCP), and methyl dichlorophosphate (MDCP) were all observed to interact with the silica surface through the formation of a hydrogen bond between the phosphoryl oxygen of the simulant and an isolated hydroxyl group on the surface. In the limit of zero coverage, and after defect effects were excluded, the activation energies for desorption were measured to be 57.9 ± 1, 54.5 ± 0.3, 52.4 ± 0.6, 48.4 ± 1, and 43.0 ± 0.8 kJ/mol for DIMP. DMMP, TMP, DMCP, and MDCP respectively. The adsorption strength was linearly correlated to the magnitude of the frequency shift of the ν(SiO-H) mode upon simulant adsorption. The interaction strength was also linearly correlated to the calculated negative charge on the phosphoryl oxygen, which is affected by the combined inductive effects of the simulants’ different substituents. From the structure-function relationship provided by the simulant studies, the CWA, Sarin is predicted to adsorb to isolated hydroxyl groups of the silica surface via the phosphoryl oxygen with a strength of 53 kJ/mol. The interactions of two common mustard simulants, 2-chloroethyl ethyl sulfide (2-CEES) and methyl salicylate (MeS), with amorphous silica were also studied. 2-CEES was observed to adsorb to form two different types of hydrogen bonds with isolated hydroxyl groups, one via the S moiety and another via the Cl moiety. The desorption energy depends strongly on the simulant coverage, suggesting that each 2-CEES adsorbate forms two hydrogen bonds. MeS interacts with the surface via a single hydrogen bond through either its hydroxyl or carbonyl functionality. While the simulant work has allowed us to make predictions agent-surface interactions, actual experiments with the live agents need to be conducted to fully understand this chemistry. To this end, a new surface science instrument specifically designed for agent-surface experiments has been developed, constructed, and tested. The instrument, located at Edgewood Chemical Biological Center, now makes it possible to make direct comparisons between simulants and agents that will aid in choosing which simulants best model live agent chemistry for a given system. These fundamental studies will also contribute to the development of new agent detection and decontamination strategies. / Ph. D.
522

Effect of Surface Chemistry and Young's Modulus on the Surface Motility of the Bacterium Pseudomonas Aeruginosa

Hittel, Jonathan Erwin 30 January 2020 (has links)
This study demonstrates that the surface motility of the bacterium Pseudomonas aeruginosa is dependent on the surface chemistry of the underlying substrate. In particular, cells on hydrophobic polydimethylsiloxane (PDMS) have a speed that is on average 38% greater than on hydrophilic PDMS. These results were obtained using time-lapse microscopy of bacteria exposed to continuously flowing tryptic soy broth growth medium at 37 ⁰C. Not only are the mean speeds different, the distributions of speeds are also different: on the hydrophobic substrate, a smaller proportion of bacteria move by less than about one body-length (~3 µm) in 60 minutes. In addition, the surface chemistry affects the orientation of the cells: there is a greater fraction of "walking" bacteria on the hydrophobic surface. Sensitivity to the substrate surface chemistry occurs despite the presence of a complex mix of substances in the growth medium and offers hope that surface chemistry can be used to tune motility and the progression to biofilm formation. Additionally, the effect of reducing the near-surface Young's modulus of the PDMS from 7000 to 70 kPA is investigated. For the lower modulus material, there is an increase in the likelihood of a bacterium executing sudden, high angle turns. This is evident in images with a framerate of one frame per 0.22s. However, the impact of these turns is averaged out over longer times such that the mean speed over periods of more than about one minute is the same for bacteria on both the high and the low modulus materials. Consequently, except over very short time intervals, Young's modulus in the surface region is not effective as a means of modulating motile behavior. / Master of Science / This study demonstrates that the ability of the bacterium Pseudomonas aeruginosa to move on a solid surface is dependent on the surface chemistry of the underlying substrate. In particular, cells on hydrophobic polydimethylsiloxane (PDMS) have a speed that is on average 38% greater than on hydrophilic PDMS. These results were obtained using time-lapse microscopy of bacteria exposed to continuously flowing growth medium at 37 ⁰C. Not only are the mean speeds different, the distributions of speeds are also different: on the hydrophobic substrate, a smaller proportion of bacteria move by less than about one body-length (~3 µm) in 60 minutes. In addition, the surface chemistry affects the orientation of the cells: there is a greater fraction of vertically-oriented bacteria on the hydrophobic surface. Additionally, the effect of reducing the stiffness of the PDMS from 7000 to 70 kPA is investigated. For the less stiff material, there is an increase in the likelihood of a bacterium executing sudden, high angle turns. This is evident in images with a framerate of one frame per 0.22s. However, the impact of these turns is averaged out over longer times such that the mean speed over periods of more than about one minute is the same for bacteria on both the high and the low stiffness materials. Consequently, except over very short time intervals, stiffness in the surface region is not effective as a means of changing patterns of surface-bound P. aeruginosa movement.
523

Understanding and Controlling the Degradation of Nickel-rich Lithium-ion Layered Cathodes

Steiner, James David 08 October 2018 (has links)
Consumers use batteries daily, and the lithium-ion battery has undergone a lot of engineering advances in the last few decades. There is a need to understand and improve the cathode chemistry to adapt to the rapidly growing electronics and electric vehicle market that is continually demanding more energy from batteries. Nickel-rich layered LiNi<sub>1-x-y</sub>Mn<sub>x</sub>Co<sub>y</sub>O₂ (1-x-y ≥ 0.6, NMC) cathodes could potentially provide the necessary energy to meet the demand of the high energy applications. Overcoming the stability issues from oxygen activation in nickel-rich materials is one of the largest challenges facing the commercial incorporation of NMCs. This thesis focuses on, LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub> (NMC811). Using surface sensitive techniques, such as Xray Absorption (XAS), our research reveals that degradation of NMC811 occurs during cycling, regardless of temperature, and that oxygen activation plays a role in the overall surface changes and degradation observed in NMC811. The thesis then explores the role of substituting a transition metal in the NMC811. Then we used a gradient addition of titanium to the NMC811 material to stabilize the battery performance. Theoretical techniques, such as Finite Difference Method Near Edge Structure, and experimental techniques, such as XAS, revealed how transition metal substitution, specifically titanium, stabilized the lattice. The results indicated that titanium deactivates oxygen by limiting the nickel and oxygen covalency that typically leads to oxygen activation upon charging. We observed that the titanium substitution increases cycling reversibility after hundreds of cycles. Overall, the work indicates that a more stable nickel-rich material is possible. It identifies the reasons why substitution can work in cathode materials. Additionally, the methods described can provide a guideline to further studies of stabilization of the cathode. / Master of Science / Consumers across the world use lithium-ion batteries in some fashion in their everyday life. The growing demand for energy has led to batteries dying quicker than consumers want. Thus, there are calls for researchers to develop batteries that are longer lasting. However, the initial increase in battery life over the years has been from better engineering and not necessarily from making a better material for a battery. This thesis focuses on the understanding of the chemistry of the materials of a battery. Throughout the chapters, the research delves into the how and why materials with extra nickel degrade quickly. Then, it investigates a method of making these nickel-rich materials last longer and how the chemistry within these materials are affected by the addition of a different metal. Overall, the findings indicate that the addition of titanium creates a more stable material because it mitigates the release of oxygen and prevents irreversible changes within the structure of the material. It determines that the chemistry behind the failings of nickel-rich lithium-ion batteries and a potential method for allowing the batteries to last longer. It also provides insight and guidance for potential future research of stabilization of lithium-ion materials.
524

Spectroscopic Studies of Small Molecule Adsorption and Oxidation on TiO2-Supported Coinage Metals and Zr6-based Metal-Organic Frameworks

Driscoll, Darren Matthew 02 May 2019 (has links)
Developing a fundamental understanding of the interactions between catalytic surfaces and adsorbed molecules is imperative to the rational design of new materials for catalytic, sorption and gas separation applications. Experiments that probed the chemistry at the gas-surface interface were employed through the utilization of in situ infrared spectroscopic measurements in high vacuum conditions to allow for detailed and systematic investigations into adsorption and reactive processes. Specifically, the mechanistic details of propene epoxidation on the surface of nanoparticulate Au supported on TiO2 and dimethyl chlorophosphate (DMCP) decomposition on the surface of TiO2 aerogel-supported Cu nanoparticles were investigated. In situ infrared spectroscopy illustrates that TiO2-supported Au nanoparticles exhibit the unprecedented ability to produce the industrially relevant commodity chemical, propene oxide, through the unique adsorption configuration of propene on the surface of Au and a hydroperoxide intermediate (-OOH) in the presence of gaseous hydrogen and oxygen. Whereas, TiO2-supported Cu aerogels oxidize the organophosphate-based simulant, DMCP, into adsorbed CO at ambient environments. Through a variety of spectroscopic methods, each step in these oxidative pathways was investigated, including: adsorption, oxidation and reactivation of the supported-nanoparticle systems to develop full mechanistic pictures. Additionally, the perturbation of vibrational character of the probe molecule, CO, was employed to characterize the intrinsic µ3-hydroxyls and molecular-level defects associated with the metal-organic framework (MOF), UiO-66. The adsorption of CO onto heterogeneous surfaces effectively characterizes surfaces because the C-O bond vibrates differently depending on the nature of the surface site. Therefore, CO adsorption was used within the high vacuum environment to identify atomic-level characteristics that traditional methods of analysis cannot distinguish. / Doctor of Philosophy / The interaction between small gas molecules and solid surfaces is important for environmental, industrial and military applications. In order to chemically change molecules, surfaces act to lower activation barriers and provide a low energy plane to create new chemical bonds. To study the fundamental interactions that occur between gas molecules and surfaces, we employ infrared spectroscopy in order to probe the vibrations of bonds at the gas–surface interface. By tracking the chemical bonds that break and form on the surface of different materials, we can develop surface reaction pathways for a variety of different chemical reactions. We focus our efforts on two different applications: the conversion of propene to propene oxide for industrial applications and the decomposition of chemical warfare agents. Using the techniques described above, we were able to develop reaction pathways for both propene oxidation and chemical warfare agent simulant degradation. Our work is critical to the further development of catalysts that harness the specific structural and chemical properties we identify as important and exploit them for further use.
525

A Combined Modelling and Experimental Study of the Surface Energetics of a-Lactose Monohydrate

Saxena, A., Kendrick, John, Grimsey, Ian M., Roberts, R., York, Peter January 2009 (has links)
No / The surface energy of a-lactose monohydrate measured by inverse gas chromatography (IGC) is reported along with a dynamic molecular modelling study of the interaction of the various molecular probes with different surfaces of a-lactose monohydrate. The IGC results show that a-lactose monohydrate is acidic in nature. Using quantitative calculations of the energy of adsorption, the acidic nature of the surface is confirmed and the calculated values agree closely with the experimentally measured values. Along with the acidic nature, dynamic molecular modelling also reveals that the presence of a channel and water molecules on a surface affects the surface energetics of that face. The presence of water on the surface can decrease or increase the surface energy by either blocking or attracting a probe molecule, respectively. This property of water depends on its position and association with other functional groups present on the surface. The effect of a channel or cavity on the surface energy is shown to depend on its size, which determines whether the functional groups in the channel are assessable by probe molecules or not. Overall molecular modelling explains, at the molecular level, the effect of different factors affecting the surface energy of individual faces of the crystal.
526

The molecular precursor approach to control the morphology of Co₃O₄ on support materials

de Jongh, Leigh-Anne January 2011 (has links)
In this project, the TMP method was employed to produce “active sites.” These active sites are for influencing and controlling the Co₃O₄ growth. One of the aims was to investigate what effect the grafting of the molecular precursor has on the nature and distribution of active sites on the various support materials. The second aim was to investigate the effect an increase in molecular precursor loading, in various impregnation steps, has on the nature and distribution of the active sites. The third aim was to investigate the effect of the steric constraints of ligand groups, by changing the molecular precursor, on the nature and distribution of active sites. The fourth aim was to use the different aspects discussed above and apply them to investigate what effect the above-mentioned modifications have on Co₃O₄ morphology. While another aim was to investigated what effect varying the quantity of Co(NO₃)₂•6H₂O has on Co₃O₄ morphology. Lastly, we investigated what effect varying the impregnation procedure and calcination temperature have on the Co₃O₄ morphology. The effect the support has on the phase of titanium molecular precursor was investigated using molecular precursor, ⁱPrOTi[OSi(O[superscript(t)]Bu₃)]₃. The supports used were Silica 922, NanoDur, Aerosil 200, Stöber spherical silica, SBA-15, mod MCM-41 and sMCM-41. The molecular precursor ⁱPrOTi[OSi(O[superscript(t)]Bu₃)]₃ was revealed to be in the orthorhombic TiO₂ with space group P(cab), normal brookite lattice, on Silica 922 after calcination but only an isolated area displaying this morphology. Generally we do not observe any TiO₂ on the support, which indicates that we have produce site-isolated sites, suggesting the TMP method has been successful on all of the various supports. The emphasis is placed on the effect of this molecular precursor and the respective support has on the Co₃O₄ morphology in Chapter 3. In this Chapter, a unique morphology was observed on Silica 922 which showed Co₃O₄ nanorods of cubic Co₃O₄ in the space group Fd-3m. Silica 922 was used for the remainder of the thesis to investigate the effect the quantity of molecular precursor has on the nature of active sites and Co₃O₄ morphology in Chapter 4. This support was also used to investigate the effect the amount of Co(NO₃)₂•6H₂O has on Co₃O₄ morphology in Chapter 5. This support was lastly used to investigate the steric constraints of the ligand groups, Ti[OSi(O[superscript(t)]Bu)₃]₄ (TiSi4), ⁱPrOTi[OSi(O[superscript(t)]Bu)₃]₃ (TiSi3), (OtBu)₃TiOSi(O[superscript(t)]Bu)₃ (TiSi) and the least sterically constrained Ti(OⁱPr)₄ has on the loading of precursor and Co₃O₄ morphology in Chapter 6.
527

Structure, Bonding and Chemistry of Water and Hydroxyl on Transition Metal Surfaces

Andersson, Klas January 2006 (has links)
<p>The structure, bonding and chemistry of water and hydroxyl on metal surfaces are presented. Synchrotron based x-ray photoelectron- and x-ray absorption spectroscopy along with density functional theory calculations mainly form the basis of the results. Conditions span the temperature range 35 - 520 K and pressures from ultra-high vacuum (~10 fAtm) to near ambient pressures (~1 mAtm). The results provide, e.g, new insights on the importance of hydrogen bonding for surface chemical kinetics.</p><p>Water adsorbs intact on the Pt(111), Ru(001) and Cu(110) surfaces at low temperatures forming 2-dimensional wetting layers where bonding to the metal (M) mainly occurs via H<sub>2</sub>O-M and M-HOH bonds. Observed isotope differences in structure and kinetics for H<sub>2</sub>O and D<sub>2</sub>O adsorption on Ru(001) are due to qualitatively different surface chemistries. D<sub>2</sub>O desorbs intact but H<sub>2</sub>O dissociates in kinetic competition with desorption similar to the D<sub>2</sub>O/Cu(110) system. The intact water layers are very sensitive to x-ray and electron induced damage.</p><p>The mixed H<sub>2</sub>O:OH phase on Ru(001) consists of stripe-like structures 4 to 6 Ru lattice parameters wide where OH decorates the edges of the stripes. On Pt(111), two different long-range ordered mixed H<sub>2</sub>O:OH structures are found to be inter-related by geometric distortions originating from the asymmetric H-bond donor-acceptor properties of OH towards H<sub>2</sub>O.</p><p>Water adsorption on Cu(110) was studied at near ambient conditions and compared to Cu(111). Whereas Cu(111) remains clean, Cu(110) holds significant amounts of water in a mixed H<sub>2</sub>O:OH layer. The difference is explained by the differing activation barriers for water dissociation, leading to the presence of OH groups on Cu(110) which lowers the desorption kinetics of water by orders of magnitude due to the formation of strong H<sub>2</sub>O-OH bonds. By lowering the activation barrier for water dissociation on Cu(111) by pre-adsorbing atomic O, generating adsorbed OH, similar results to those on Cu(110) are obtained.</p>
528

High-Temperature Corrosion of Aluminum Alloys: Oxide-Alloy Interactions and Sulfur Interface Chemistry

Addepalli, Swarnagowri 12 1900 (has links)
The spallation of aluminum, chromium, and iron oxide scales is a chronic problem that critically impacts technological applications like aerospace, power plant operation, catalysis, petrochemical industry, and the fabrication of composite materials. The presence of interfacial impurities, mainly sulfur, has been reported to accelerate spallation, thereby promoting the high-temperature corrosion of metals and alloys. The precise mechanism for sulfur-induced destruction of oxides, however, is ambiguous. The objective of the present research is to elucidate the microscopic mechanism for the high-temperature corrosion of aluminum alloys in the presence of sulfur. Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM) studies were conducted under ultrahigh vacuum (UHV) conditions on oxidized sulfur-free and sulfur-modified Al/Fe and Ni3Al(111). Evaporative deposition of aluminum onto a sulfur-covered iron surface results in the insertion of aluminum between the sulfur adlayer and the substrate, producing an Fe-Al-S interface. Aluminum oxidation at 300 K is retarded in the presence of sulfur. Oxide destabilization, and the formation of metallic aluminum are observed at temperatures > 600 K when sulfur is located at the Al2O3-Fe interface, while the sulfur-free interface is stable up to 900 K. In contrast, the thermal stability (up to at least 1100 K) of the Al2O3 formed on an Ni3Al(111) surface is unaffected by sulfur. Sulfur remains at the oxide-Ni3Al(111) interface after oxidation at 300 K. During annealing, aluminum segregation to the g ¢ -Al2O3-Ni3Al(111) interface occurs, coincident with the removal of sulfur from the interfacial region. A comparison of the results observed for the Al2O3/Fe and Al2O3/Ni3Al systems indicates that the high-temperature stability of Al2O3 films on aluminum alloys is connected with the concentration of aluminum in the alloy.
529

Développement d’une méthode de transfert de protéines présentes dans des sections tissulaires minces sur des cibles fonctionnalisées pour augmenter la spécificité de l’imagerie MS du protéome

Fournaise, Érik 08 1900 (has links)
L’imagerie par spectrométrie de masse (IMS) est une technique en pleine expansion et utilisée dans beaucoup d’études effectuées sur des systèmes biologiques tels que la corrélation entre l’expression moléculaire et l’état de santé d’un tissu et pour étudier la biologie du développement. Cependant, plus particulièrement lors de l’analyse de protéines, seulement les molécules les plus abondantes et/ou les plus facilement ionisables seront détectées. L’une des approches utilisées pour éviter cette limitation est de transférer les protéines de manière sélective à partir d’une section tissulaire mince vers une surface fonctionnalisée tout en maintenant leur organisation spatiale. Dans ce cas, seulement les protéines possédant une affinité pour la surface seront alors retenues alors que les autres seront éliminées. Donc, la nature chimique de cette surface est critique. Les travaux de recherches présentés dans ce mémoire portent sur le développement d’une méthode de transfert des protéines d’une section tissulaire vers une surface composée de nitrocellulose. Cette méthode utilise un système permettant d’effectuer le transfert sans contact physique direct entre les surfaces. De plus, lors du transfert, une pression physique est appliquée. Dans une première approche, la méthode développée a été appliquée en utilisant une section de rein de souris comme échantillon modèle. Des sections sérielles ont été collectées, soit pour être colorées à l’aide d’hématoxyline et d’éosine (H&E) afin de démontrer la régiospécificité du transfert, soit pour être analysées directement par IMS afin de déterminer si les protéines détectées après transfert sont également détecter dans les sections analysées directement. Les résultats obtenus ont démontré qu’un sous-ensemble de protéines a été transféré tout en conservant leur position spatiale initiale dans les sections. Certains signaux observés pour les protéines transférées sont uniques et/ou sont nettement mieux détectés que lors de l’analyse directe d’une section. / Imaging mass spectrometry (IMS) is a technique in full expansion that is used in a large range of studies such as the correlation between molecular expression and the health status of a tissue and developmental biology. A common limitation of the technology is that only the more abundant and/or more easily ionisable molecules are usually detected, in particular in protein analysis. One of the methods used to alleviate this limitation is the direct specific transfer of proteins from a tissue section to a functionalized surface with high spatial fidelity. In this case, only proteins with an affinity for the surface will be retained whereas others will be removed. The chemical nature of the surface is therefore critical. The research work presented in this document proposes a high spatial fidelity transfer method for proteins from a tissue section onto a nitrocellulose surface. The method uses a homebuilt apparatus that allows the transfer process to be done without any direct physical contact between the tissue section and the transfer surface while still using physical pressure to help protein migration. In subsequent work, the developed method was used to transfer proteins from a mouse kidney section onto the nitrocellulose surface. Serials sections were also collected either to be colored with hematoxylin and eosin (H&E) to assess the high spatial fidelity of the transfer process, or to be directly analyzed as a control sample to access the different signals detected after transfer. Results showed a high spatial fidelity transfer of a subset of proteins. Some of the detected transferred proteins were not observed after direct tissue analysis and/or showed an increase in sensitivity.
530

Surface characterisation and functional properties of modified diamond electrodes

Shpilevaya, Inga January 2014 (has links)
In this work, the use of modified diamond as an electrode material with superlative physical and electrochemical properties was investigated in a number of electrochemical applications. The surface chemistry of three differing forms of diamond, namely boron-doped microcrystalline diamond, boron-doped diamond powder and detonation nanodiamond powder was modified utilising such strategies as hydrogen plasma treatment, reactive ion plasma etching along with various chemical treatments. The surface and functional properties of the modified diamond electrodes were studied using a wide spectrum of techniques. The electrochemical activity of these materials was concomitantly investigated in order to expand the knowledge of diamond electrochemistry and to establish an understanding of how the surface chemistry of these materials impacts their electrochemical performance. In the first study, the nanostructuring strategies of boron-doped diamond surface with platinum nanoparticles were developed. In particular, two types of diamond nanostructures were produced: one consisting of platinum particles located on the top of diamond nanorods, the other with platinum particles located in the bottom of diamond nanopits. For the first time, the experimental evidence proving the mechanism of the diamond nanostructuring process was reported. The electrochemical activity of these nanostructured diamond electrodes with regard to the electrochemical oxidation of glucose and methanol was investigated. In the second study, the relationship between the surface chemistry of three differing forms of diamond, including microcrystalline boron-doped diamond, boron-doped diamond powder as well as detonation nanodiamond powder, and the electrode fouling in the result of the adsorption processes in methyl viologen and anthraquinonedisulfonate solutions was investigated. The influence of two dissimilar surface terminations: hydrophobic H-terminated and hydrophilic O-terminated on the electrode performance was studied in detail. This work provides a useful insight on the likely reasons for the undesirable adsorption occurrence which may be experienced in many electroanalytical applications that utilise solid and powdered forms of diamond. The third project extends the discussion on the study of the diamond electrodes, modified with detonation nanodiamond and boron-doped diamond powders and investigates the electrochemical behaviour of these materials. In this work, charge transport within the diamond powder films, partition coefficients of different redox mediators along with heterogeneous electron transfer constants were identified. The chemical modification of these electrodes with platinum nanoparticles along with the mechanism of nucleation and growth of the latter were studied. The enhanced electrode performance with regard to methanol electrooxidation reaction was demonstrated. The fourth study investigates the preparation of nickel modified boron-doped diamond electrodes and ascertains the relationship between the surface chemistry of the modified diamond and the associated electrocatalytic performance of nickel nanoparticles in hydrogen peroxide and glucose electrooxidation. The fifth study reports on the development of a novel surface functionalization strategy, based on porphyrin and amide coupling chemistry, which allows the creation of hybrid biomimetic diamond interface that was used as the artificial &beta;-alanine receptor.

Page generated in 0.3552 seconds