• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 8
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 74
  • 49
  • 20
  • 19
  • 16
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of the precessing vortex core in cyclone dust separators and a method of prevention

Yazdabadi, Paul Adi January 1995 (has links)
No description available.
2

STRONGLY SWIRLING FLOW STUDY ON PRESSURE-SWIRL ATOMIZER AND CYCLONE COMBUSTOR

WANG, DEXIN 23 September 2002 (has links)
No description available.
3

Modelling of fluid flow and heat transfer of decaying swirl in a heated annulus

Solnordal, Christopher Baard Unknown Date (has links) (PDF)
The fluid flow and heat transfer characteristics of the turbulent swirling flow of air through a heated annulus have been quantified. The motivation for this study was to improve the understanding of flow within a SIROSMELT top submerged industrial smelting lance. Within the lance, helical vane swirler flights are used to impart swirl to a coolant, so that heat transfer from the lance wall to the coolant is enhanced. A review of the literature revealed no information on the mean and turbulent flow structure for swirling flows in a heated annulus. (For complete abstract open document)
4

Transition and Acoustic Response of Vortex Breakdown Modes in Unconfined Coaxial Swirling Flow and Flame

Santhosh, R January 2015 (has links) (PDF)
The efficient and enhanced mixing of heat and incoming reactants is achieved in modern gas turbine systems by employing swirling flows. This is realized by a low velocity region (internal recirculation zone -IRZ) zone resulting from vortex breakdown phenomenon. Besides, IRZ acts as effective flame holder/stabilization mode. Double concentric swirling jet is employed in plethora of industrial applications such as heat exchange, spray drying and combustion. As such, understanding essential features of vortex breakdown induced IRZ and its acoustic response in swirling flow/flame is important in thermo-acoustic instability studies. The key results of the present experimental investigation are discussed in four parts. In the first part, primary transition (sub-critical states) from a pre-vortex breakdown (Pre-VB) flow reversal to a fully-developed central toroidal recirculation zone (CTRZ) in a non-reacting, double-concentric swirling jet configuration is discussed when the swirl number is varied in the range 0.592 S 0.801. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially-penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Rom) which appears to describe the spreading of the zone of swirl influence in different flow regimes. The second part describes a secondary transition from an open-bubble type axisymmetric vortex breakdown (sub-critical states) to partially-open bubble mode (super-critical states) through an intermediate, critical regime of conical sheet formation for flow modes Rom ≤ 1 is discussed when the swirl number (S) is increased beyond 0.801. In the third part, amplitude dependent acoustic response of above mentioned sub and supercritical flow states is discussed. It was observed that the global acoustic response of the sub-critical VB states was fundamentally different from their corresponding super-critical modes. In particular, with a stepwise increase in excitation amplitude till a critical value, the sub-critical VB topology moved downstream and radially outward. Beyond a critical magnitude, the VB bubble transited back upstream and finally underwent radial shrinkage at the threshold excitation amplitude. On the other hand, the topology of the super-critical VB state continuously moved downstream and radially outwards and finally widened/fanned-out at threshold amplitude. In the final part, transition in time-averaged flame global flame structure is reported as a function of geometric swirl number. In particular, with a stepwise increase in swirl intensity, primary transition is depicted as a transformation from zero-swirl straight jet flame to lifted flame with blue base and finally to swirling seated flame. Further, a secondary transition is reported which consists of transformation from swirling seated flame to swirling flame with a conical tailpiece and finally to highly-swirled near blowout ultra-lean flame. For this purpose, CH* chemiluminescence imaging and 2D PIV in meridional planes were employed. Three baseline fuel flow rates through the central fuel injection pipe were considered. For each of the fuel flow cases (Ref), six different co-airflow rate settings (Rea) were employed. The geometric swirl number (SG) was increased in steps from zero till blowout for a particular fuel and co-airflow setting. A regime map (SG vs Rea) depicting different regions of flame stabilization were then drawn for each fuel flow case. The secondary transformation is explained on the basis of physical significance of Rom.
5

Flow and combustion characteristics of model annular and can-type combustors

Tse, David Gar Nile January 1988 (has links)
No description available.
6

Experimental Investigation of Self-Excited Instabilities in Liquid-Fueled Swirl Combustion

Wang, Xionghui January 2017 (has links)
No description available.
7

Fuel-NOx Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner

Wu, Chunyang 25 January 2006 (has links)
Insufficient knowledge of fireside behavior in the near-burner region during biomass combustion is one of major factors preventing widespread use of this renewable fuel in pulverized coal power plants. The current research is aimed to investigate the impact of biomass cofiring on NO formation in the near-burner region through interpretation of computational fluid dynamics (CFD) predictions and data collected from a series of biomass tests in a pilot-scale (0.2 MW), swirling flow burner. Two-dimensional gas species mole fraction data were collected with state-of-theart instruments from nine experiments, composing one herbaceous biomass (straw), one woody biomass (sawdust), a low sulfur sub-bituminous coal (Blind Canyon) and a high sulfur bituminous coal (Pittsburgh #8) and their mixtures of different mass fractions with the same swirl setting. Velocity and temperature are calculated from CFD modeling with FLUENTTM, supplemented with hot-wire anemometer measurements. For the first time, a reverse flow region was predicted during solid fuel combustion simulations for the reactor used. Interpretation of the results was carried on with two original methods: stoichiometric maps and normalized species mole fraction profiles. The impacts of biomass on combustion in the swirling flows were analyzed from several aspects: aerodynamics, fuel properties (particle size, volatile content, and fix-carbon content), and NO formation routes. The species maps show the low-grade fuel combustion under swirling flows is composed of two zones: a high species-gradient combustion region attached to the inlet and flat-profiles dominant across the rest of the reactor. Results from tests involving biomass clearly demonstrate the expansion of the combustion region. CFD calculations demonstrate that there is no obvious alteration of the reverse-flow region by biomass combustion. The larger average particle size of biomass generates a combustion region with further penetration into the reactor. In certain tests involving biomass, more NH3 than HCN was detected in several biomass experiments, though limited by the data collection method and low fuel-nitrogen fuels used (sawdust). Supplemented with kinetic calculations with CHEMKIN, it was found that NO formation is dependent on the nitrogen forms in the parent fuels.
8

Swirling flow of viscoelastic fluids

Stokes, Jason R. Unknown Date (has links)
The ability to understand and predict the flow behaviour of non-Newtonian fluids in swirling flow is industrially important for the efficient design and performance of processes which utilise fluids with complex rheological properties. In particular, fluids with elastic properties are not well described by non-Newtonian constitutive models, such that predictions using such models must be carefully validated. A benchmark problem is proposed here which provides a well defined geometry to study the swirling flow of non-Newtonian fluids as a test case for the validation of constitutive models. The confined swirling flow utilised is a torsionally driven cavity where the test fluid is confined in a cylinder with a rotating bottom lid, and stationary side walls and top lid. The flow field is three-dimensional and consists of both a primary motion, which is directed azimuthally, and a secondary motion, which is located in the radial and axial plane of the cylinder and driven by inertial and/or elastic forces.
9

Swirling flow of viscoelastic fluids

Stokes, Jason R. Unknown Date (has links)
The ability to understand and predict the flow behaviour of non-Newtonian fluids in swirling flow is industrially important for the efficient design and performance of processes which utilise fluids with complex rheological properties. In particular, fluids with elastic properties are not well described by non-Newtonian constitutive models, such that predictions using such models must be carefully validated. A benchmark problem is proposed here which provides a well defined geometry to study the swirling flow of non-Newtonian fluids as a test case for the validation of constitutive models. The confined swirling flow utilised is a torsionally driven cavity where the test fluid is confined in a cylinder with a rotating bottom lid, and stationary side walls and top lid. The flow field is three-dimensional and consists of both a primary motion, which is directed azimuthally, and a secondary motion, which is located in the radial and axial plane of the cylinder and driven by inertial and/or elastic forces.
10

旋回流中での予混合火炎の伝播に関する数値解析

趙, 黛青, ZHAO, Daiqing, 山下, 博史, YAMASHITA, Hiroshi 10 1900 (has links)
No description available.

Page generated in 0.1038 seconds