• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 16
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase switching behaviour in lead-free Na0.5Bi0.5TiO3-based ceramics

Wang, Ge January 2017 (has links)
This PhD project is focused on three lead-free ferroelectric solid solutions, which are specifically Na0.5Bi0.5TiO3-KNbO3(NBT-KN), Na0.5Bi0.5TiO3-NaNbO3(NBT-NN) and Na0.5Bi0.5TiO3-BaTiO3(NBT-BT), to evaluate the effects of composition, electric field and temperature on structural and electrical properties. Novel observations of both reversible and irreversible electric field-induced phase switching were made in both NBT-KN and NBT-NN ceramics. The NBT-KN solid solution is the primary focus of this thesis. All compositions were observed to be cubic in the as-sintered, unpoled state. However, a well-defined ferroelectric hysteresis P-E loop was obtained for compositions with low KN contents, indicating that an irreversible phase transition from a weak-polar relaxor ferroelectric (RF) to a long-range ordered metastable ferroelectric (FE) state had occurred during the measurement procedure. Both the unpoled and poled ceramic powders were examined using high resolution synchrotron XRD. For the poled state, a rhombohedral R3c structure was identified for compositions with low KN content, confirming the occurrence of the irreversible electric field-induced structural transformation from cubic to rhombohedral. In contrast, a cubic structure was retained for high KN contents, giving rise to reversible phase switching evidenced by constricted P-E hysteresis loops. Similar behaviour was observed for NBT-NN system. An 'in-situ' electric field poling experiment was conducted using high energy synchrotron XRD. In certain NBT-KN compositions the structural transformation, from cubic to mixed phase cubic+rhombohedral and finally single phase rhombohedral, occurred progressively with increasing cycles of a bipolar electric field. Similar behaviour was observed for NBT-NN compositions having low NN contents. Furthermore, the distributions of domain orientation and lattice strain over a range of orientations relative to the poling direction were determined for NBT-KN, NBT-NN and NBT-BT ceramics exhibiting the rhombohedral phase. By combining the structural information with the results of dielectric and ferroelectric measurements, a phase diagram was constructed to illustrate the influence of temperature and composition on the stability of the metastable ferroelectric and relaxor ferroelectric states for the NBT-KN system. Furthermore, the phase transition temperatures obtained from dielectric measurements were correlated with the ferroelectric and thermal depolarisation characteristics for each of the NBT-KN, NBT-NN and NBT-BT systems.
2

Modelling of microstructure development in silicon-containing bainitic free-machining steels

Guo, Lei January 2017 (has links)
This research aims to model the microstructure development of Si-containing bainitic free-machining steel, including allotriomorphic ferrite, idiomorphic ferrite, pearlite, Widmanstatten ferrite, bainite and martensite. The effect of recalescence has been included to give a better estimation of the cooling curve under natural cooling conditions. A model for estimating retained austenite size distribution in the carbide-free bainitic microstructure has been developed. Manganese sulphide particles are used in the free-machining steel to break chips during machining; its effect on the prior austenite grain size has been investigated, taking account of the sulphide shape. The theories of all the major solid state phase transformations involved in steel are reviewed in chapter 2. The theory of the simultaneous transformation model is presented in chapter 3.uu A recalescence model dealing with the heat of reaction has been developed in chapter 5 for bar-shaped products. The model is based on the integration of a heat transfer model, considering latent heat generation, into the simultaneous transformation framework. It has been found that latent heat can greatly affect the transformation, especially in the case of pearlite and Widmanstatten ferrite. Chapter 6 presents the model for estimating the size distribution of retained austenite regions. The model builds on the random division of an austenite grain by bainite sheaves, which means the sizes of the two new compartments generated by the division of an austenite grain by a bainite sheaf are allocated randomly. The next compartment to be divided is also chosen at random. Good agreement between prediction and experiment has been achieved for high carbon carbide-free bainitic microstructures. The transition temperature from upper to lower bainite is modelled in chapter 7. The model compares the time required for decarburising a supersaturated bainitic ferrite platelet and that for cementite precipitation within the ferrite platelet. Manganese, silicon and chromium are considered in the model. It is suggested that carbon and manganese favour lower bainite, whereas silicon promotes upper bainite. The effect of manganese sulphide particles on austenite grain boundary motion has been studied in chapter 8. These rod-shaped particles span many austenite grains; the result shows that the long rod-shaped particles are more effective in pinning the austenite grain boundary than spheres of the same volume, or even strings of identical spheres with the same total volume. Experimental work is presented in chapters 9 and 10. In situ synchrotron X-ray study of the bainite transformation reveals that the distribution of carbon in the residual austenite becomes heterogeneous as transformation progresses. Low carbon regions transform preferentially into martensite during cooling after isothermal bainite transformation. The partitioning of carbon was found to lag behind the bainite transformation; more time is needed as the transformation temperature is reduced. Tetragonality was not observed in either the bainitic ferrite or martensite, because the carbon content of the alloy is relatively low, and the Zener ordering temperature is below the bainite and martensite transformation temperature. No significant difference was observed in the kinetics of bainite transformation between the high sulphur and low sulphur steel.
3

The precipitation of hydrides in zirconium alloys

Blackmur, Matthew Sebastian January 2015 (has links)
The thesis first introduces the topic of nuclear energy and provides a brief section on plant familiarisation, after which zirconium nuclear fuel cladding is explained, and an in-depth literature review is presented on the in-service degradation of this component from hydriding. The concept of synchrotron X-ray diffraction is elucidated, and examples of its use are given, relevant to the topic of this work. The experimental section discusses an initial quantification of the Zircaloy-4 material used throughout the present work, and documents in minutia the process of collecting and analysing in-situ synchrotron X-ray diffraction data. The experimental campaign discussed within involved a series of consecutive thermal cycles designed to investigate the redistribution of hydrogen as a function of thermal and concentration gradients; the kinetics of precipitation during isothermal dwells at reactor relevant temperatures; and the evolution of strain in the matrix and hydride during these dwells. As an alternative style thesis, these three topics are separated into three independent proposed manuscripts, produced in a format ready for publication. The diffusion and redistribution paper observes localised enrichment and depletion that occurs as a function of time and temperature, investigating the flux of hydrogen that results from concentration and thermal gradients, and introduces the concept of hydrogen trapping. The second manuscript documents evidence of the rate limiting kinetics for hydride precipitation seen at elevated temperatures, and describes a model for nucleation, developed to support the experimentally produced results. The final manuscript investigates the nature of the strains that evolve in the matrix and hydride phases during precipitation and growth, highlighting slow-strain rate relaxation in both phases and examining the constraining effect that the matrix has on the hydride precipitates. Lastly, the themes from each of the three manuscripts are drawn together in a final conclusion, after which further experimental analysis that is to be performed as part of this experimental campaign is outlined.
4

Fatigue crack growth in complex residual stress fields due to surface treatment and foreign object damage under simulated flight cycles

Zabeen, Suraiya January 2012 (has links)
Foreign object damage (FOD) refers to the damage that generally takes place in aero engine fans and compressor blades, due to the ingestion of hard particles/debris during aeroplane take-off, taxiing, or landing. Such damage can reduce the fatigue life expectancy of the turbine engine components by 50%. Residual stresses and small microcracks induced by the high speed FOD impacts are two root causes that result in premature failure of these components. One way to mitigate the FOD related fatigue failure is to induce deep compressive residual stress into the surface. Among the available techniques that can induce such compressive residual stress, laser shock peening (LSP) has been found to be beneficial in improving the fatigue strength. In this study aerofoil-shaped Ti-6Al-4V leading edge specimens were laser shock peened. Subsequently, FOD was introduced onto the leading edge specimen through ballistic impacts of a cube edge at angles of 0° and 45° to the leading edge. The effect of foreign object damage (FOD) on the pre-existing compressive residual stress field associated with the laser shock peening (LSP), and its change upon solely low cycle fatigue (LCF) as well as combined low and high cycle fatigue cycling has been studied. The residual stress distribution and their redistribution upon fatigue cycling were mapped around the FOD notch, using synchrotron X-ray radiation and the contour method. The results suggest that under both impact angles, the FOD event superimposed a significant additional residual stress on top of the pre-existing stress associated with the LSP process. It has been observed that the FOD notch created by 45° impact was asymmetric in shape, and had differential notch depth between the entry and exit side. However, FOD damage that is created at 0° impact appeared as a sharp V notch. A higher amount of residual stresses were produced under 0° impact condition than at 45°. It has been found even though the FOD induced residual stresses relax, residual stresses due to LSP treatment remain highly stable even in the worst condition where a 7 mm long crack was grown from a 45° notch. The plastic zone sizes ahead of a crack tip was estimated for both 0° and 45° FOD impact, and the fatigue crack growth rates are predicted utilizing the measured residual stress distribution.
5

Prussian blue analogue copper hexacyanoferrate : Synthesis, structure characterization and its applications as battery electrode and CO2 adsorbent

Ojwang, Dickson Odhiambo January 2017 (has links)
Prussian blue (PB) and Prussian blue analogues (PBAs) are compounds with potential applications in a large variety of fields such as gas storage, poison antidotes, electrochromism, electrochemistry and molecular magnets. The compounds are easy to synthesize, cheap, environmentally friendly and have been pursued for both fundamental research and industrial purposes. Despite the multifunctionality of PB and PBAs, they have complicated compositions, which are largely dependent on the synthesis methods and storage conditions. Thus, performing investigations on such compounds with defined composition, stoichiometry and crystal structure is essential. This thesis has focused on synthesis and detailed structure characterization of copper hexacyanoferrate (CuHCF) via X-ray powder diffraction (XRPD), neutron powder diffraction (NPD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), inductively coupled plasma-optical emission spectroscopy (ICP-OES), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS), infrared (IR) and Raman techniques. In addition, kinetics of thermal dehydration process, CO2 adsorption and CO2 adsorption kinetics were investigated. Moreover, in operando synchrotron X-ray diffraction experiments were performed to gain insight into the structure-electrochemistry relationships in an aqueous CuHCF/Zn battery during operation. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
6

A study of Laser Shock Peening on Fatigue behavior of IN718Plus Superalloy: Simulations and Experiments

Chaswal, Vibhor 19 September 2013 (has links)
No description available.
7

In-situ phase studies of the Zr-H system

Maimaitiyili, Tuerdi January 2014 (has links)
Zirconium alloys are widely used in the nuclear industry because of their high strength, good corrosion resistance and low neutron absorption cross-section. However, zirconium has strong affinity for hydrogen, which may lead to hydrogen concentration build-up over time during a corrosion reaction when exposed to water. Hydrogen stays in solution at higher temperature but precipitates as zirconium hydrides at ambient temperatures. The formation of zirconium hydrides is considered to be a major cause of embrittlement, in particular as a key step in the mechanism of delayed hydride cracking. Despite the fact that zirconium hydrides have been studied for several decades, the basic nature and mechanisms of hydride formation, transformation and exact structure are not yet fully understood. In order to find the answer to some of these problems, the precipitation and dissolution of hydrides in commercial grade Zr powder were monitored in real time with high resolution synchrotron and neutron radiations, and the whole pattern crystal structure analysis, using Rietveld and Pawley refinements, were performed. For the first time all commonly reported zirconium hydride phases and complete reversible transformation between two different Zr-hydride phases were recorded with a single setup and their phase transformation type have been analyzed. In addition, the preparation route of controversial γ-zirconium hydride (ZrH), its crystal structure and formation mechanisms are also discussed. / <p>Note: The papers are not included in the fulltext online.</p><p>Paper II and III in thesis as manuscript, paper II with title "The phase transformation between the δ and ε Zr hydrides"</p>
8

Thermal-mechanical behaviour of the hierarchical structure of human dental tissue

Sui, Tan January 2014 (has links)
Human dental tissues are fascinating nano-structured hierarchical materials that combine organic and mineral phases in an intricate and ingenious way to obtain remarkable combinations of mechanical strength, thermal endurance, wear resistance and chemical stability. Attempts to imitate and emulate this performance have been made since time immemorial, in order to provide replacement (e.g. in dental prosthodontics) or to develop artificial materials with similar characteristics (e.g. light armour). The key objectives of the present project are to understand the structure-property relationships that underlie the integrity of natural materials, human dental tissues in particular, and the multi-scale architecture of mineralized tissues and its evolution under thermal treatment and mechanical loading. The final objective is to derive ideas for designing and manufacturing novel artificial materials serving biomimetic purposes. The objectives are achieved using the combination of a range of characterization techniques, with particular attention paid to the synchrotron X-ray scattering (Small- and Wide-Angle X-ray Scattering, SAXS and WAXS) and imaging techniques (Micro Computed Tomography), as well as microscopy techniques such as Environmental Scanning Electron Microscopy (ESEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). Mechanical properties were characterized by nanoindentation and photoelasticity; and thermal analysis was carried out via thermogravimetric analysis (TGA). Experimental observations were critically examined and matched by advanced numerical simulation of the tissue under thermal-mechanical loading. SAXS and WAXS provided the initial basis for elucidating the structure-property relationships in human dentine and enamel through in situ experimentation. Four principal types of experiment were used to examine the thermal and mechanical behaviour of the hierarchical structure of human dental tissue and contributed to the Chapters of this thesis: (i) In situ elastic strain evolution under loading within the hydroxyapatite (HAp) in both dentine and enamel. An improved multi-scale Eshelby inclusion model was proposed taking into account the two-level hierarchical structure, and was validated against the experimental strain evaluation data. The achieved agreement indicates that the multi-scale model accurately reflects the structural arrangement of human dental tissue and its response to applied forces. (ii) The morphology of the dentine-enamel junction (DEJ) was examined by a range of techniques, including X-ray imaging and diffraction. The transition of mechanical properties across the DEJ was evaluated by the high resolution mapping and in situ compression measurement, followed by a brief description of the thermal behaviour of DEJ. The results show that DEJ is a narrow band of material with graded structure and mechanical properties, rather than a discrete interface. (iii) Further investigation regarding the thermo-mechanical structure-property relationships in human dental tissues was carried out by nanoindentation mapping of the nano-mechanical properties in ex situ thermally treated dental tissues. (iv) In order to understand the details of the thermal behaviour, in situ heat treatment was carried out on both human dental tissues and synthetic HAp crystallites. For the first time the in situ ultrastructural alteration of natural and synthetic HAp crystallites was captured in these experiments. The results presented in this thesis contribute to the fundamental understanding of the structure-property integrity mechanisms of natural materials, human dental tissues in particular. These results were reported in several first author publications in peer-reviewed journals, conference proceedings, and a book chapter.
9

The effect of chemical segregation on phase transformations and mechanical behaviour in a TRIP-assisted dual phase steel

Ennis, Bernard January 2017 (has links)
In the drive towards higher strength alloys, a diverse range of alloying elements is employed to enhance their strength and ductility. Limited solid solubility of these elements in steel leads to segregation during casting which affects the entire down-stream processing and eventually the mechanical properties of the finished product. The work presented in this PhD shows that segregation of alloying elements during casting, particularly aluminium, leads directly to banding in the final product. It has been demonstrated that no significant homogenisation is possible in this alloy within practical time constraints of the industrial thermo-mechanical process. A through-process model was developed to design a thermo-mechanical treatment aimed at reducing the effects of segregation on the formation of banding. A new polynomial function for calculating the local phase transformation temperature (Ae3) between the austenite + ferrite and the fully austenitic phase fields during heating and cooling of steel is presented. Material was produced both with and without banding and used to study the effect upon the mechanical properties. The banded steel variants show a significant reduction in tensile strength for a similar level of ductility compared to non-banded variants. In situ measurement under uniaxial loading using high-energy synchrotron diffraction allowed direct quantification of the impact of the mechanically induced transformation of metastable austenite on the work- hardening behaviour. The results reveal that the mechanically induced transformation of austenite does not begin until the onset of matrix yielding and the experimental evidence demonstrates that the austenite to martensite transformation increases the work-hardening rate of the ferrite phase and delays the onset of Stage-III hardening until the yield point of austenite. The increase in work-hardening rate (and thus work required) supports a driving force approach to transformation induced plasticity. The transformation work required leads to an increase in the macroscopic work-hardening rate after matrix yielding which offsets the decrease in the work-hardening rate in the ferrite and martensite phases up to the UTS. Steels with a high degree of banding do not show this extra contribution due to the more dominant anisotropic effect of martensite bands on the work-hardening of ferrite coupled to increased mechanical austenite stability as a result of increased carbon content. A list of revisions as requested by the examiners is produced on pages 18 and 19 of the thesis for examination. Abstract: In the drive towards higher strength alloys, a diverse range of alloying elements is employed to enhance their strength and ductility. Limited solid solubility of these elements in steel leads to segregation during casting which affects the entire down-stream processing and eventually the mechanical properties of the finished product. The work presented in this PhD shows that segregation of alloying elements during casting, particularly aluminium, leads directly to banding in the final product. It has been demonstrated that no significant homogenisation is possible in this alloy within practical time constraints of the industrial thermo-mechanical process. A through-process model was developed to design a thermo-mechanical treatment aimed at reducing the effects of segregation on the formation of banding. A new polynomial function for calculating the local phase transformation temperature (Ae3) between the austenite + ferrite and the fully austenitic phase fields during heating and cooling of steel is presented. Material was produced both with and without banding and used to study the effect upon the mechanical properties. The banded steel variants show a significant reduction in tensile strength for a similar level of ductility compared to non-banded variants. In situ measurement under uniaxial loading using high-energy synchrotron diffraction allowed direct quantification of the impact of the mechanically induced transformation of metastable austenite on the work- hardening behaviour. The results reveal that the mechanically induced transformation of austenite does not begin until the onset of matrix yielding and the experimental evidence demonstrates that the austenite to martensite transformation increases the work-hardening rate of the ferrite phase and delays the onset of Stage-III hardening until the yield point of austenite. The increase in work-hardening rate (and thus work required) supports a driving force approach to transformation induced plasticity. The transformation work required leads to an increase in the macroscopic work-hardening rate after matrix yielding which offsets the decrease in the work-hardening rate in the ferrite and martensite phases up to the UTS. Steels with a high degree of banding do not show this extra contribution due to the more dominant anisotropic effect of martensite bands on the work-hardening of ferrite coupled to increased mechanical austenite stability as a result of increased carbon content.
10

Microstructure changes during fast beta cycles of zirconium alloys

Nguyen, Chi-Toan January 2018 (has links)
During loss-of-coolant accidents (LOCA) and reactivity-initiated accidents (RIA), nuclear fuel rods experience high heating rates that change the microstructure and properties of zirconium cladding materials, which are in forms of stress-relieved, like cold-worked (CW) or recrystallised (RX) microstructure. The present study aimed to determine how different fast heating rates and starting microstructures affect the kinetics of phase transformation, the transformation textures and eventually the mechanical response in the dual-phase region. The LOCA/RIA cycles from heating at 8 to 100C/s to alpha+beta or above beta transus temperature were achieved via resistive heating in an electro-thermal-mechanical tester. Synchrotron X-ray diffraction (SXRD) and electrical resistivity measurements showed that the approach curves of CW Zircaloy-4 shift to higher temperature at faster constant heating rates and change to a new approach curve when changing rates. 2-second holding at two-phase temperature produces identical phase fractions as equilibrium. These observations are consistent with the diffusional character of the phase trans- formation. Heated at 100oCs1, RX samples transform with 2D beta-growth while CW ones show simultaneous beta-nucleation and growth. The difference arises because the fast heating rate helps preserve low-angle grain boundaries (GB) in the CW microstructure up to phase transformation temperature, increasing beta nucleation sites and prevent beta-growth. This gives rise to different textures of RX and CW materials before transformation, producing different textures, which are weak in both cases. However, this difference is enhanced during grain growth and transformation on cooling. Thus, the RX material shows strong final alpha texture with 0002 maxima aligned in TD and tilted 20deg from ND towards TD while the CW reveals an essentially random one. In both RX and CW materials, variant selection does not occur during transformation on heating. During beta-grain growth, although there is variability in beta-textures measured by SXRD and EBSD beta reconstruction, it is clear that variant selection occurs, leading to strengthening of the beta texture. During transformation on cooling, variant selection occurs early in nucleation of the alpha phase from the shared 110 beta GB in the RX condition. The flow stresses of CW Zircaloy-4 in the two-phase regime at a given temperature depend on the heating rates, despite having the same phase fractions. Heated at a slower rate, the material shows an upper yield stress followed by softening behaviour while that heated faster has a smaller yield stress followed by a high work-hardening rate and then stable flowing stresses. The evolution of diffraction elastic strains and intensity suggest the upper yield stress and softening are due to stress-induced transformation of the harder alpha grains into large and isolated softer beta grains. In contrast, the sample heated faster develops an almost continuous film of beta grains along the GB of unrecrystallised alpha-grains which results in early beta-yielding and coherent deformation of the two phases, leading to constant flow stresses. The findings will improve the accuracy of inputs from phase fractions, microstructure and texture of zirconium claddings when modelling LOCA/RIA. A crystal plasticity model should consider the effects of heating rates and cold-work, which are often ignored. The link between deformation, fast heating rates and microstructure evolution might be relevant to other processes like additive layer manufacturing and even forging in the two-phase region.

Page generated in 0.3399 seconds