Spelling suggestions: "subject:"atemsystem design. engineering"" "subject:"atemsystem design. ingineering""
291 |
EMG Signal Decomposition Using Motor Unit Potential Train ValidityParsaei, Hossein 09 1900 (has links)
Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal into its component motor unit potential trains (MUPTs). The extracted MUPTs can aid in the diagnosis of neuromuscular disorders and the study of the neural control of movement, but only if they are valid trains. Before using decomposition results and the motor unit potential (MUP) shape and motor unit (MU) firing pattern information related to each active MU for either clinical or research purposes the fact that the extracted MUPTs are valid needs to be confirmed.
The existing MUPT validation methods are either time consuming or related to operator experience and skill. More importantly, they cannot be executed during automatic decomposition of EMG signals to assist with improving decomposition results. To overcome these issues, in this thesis the possibility of developing automatic MUPT validation algorithms has been explored. Several methods based on a combination of feature extraction techniques, cluster validation methods, supervised classification algorithms, and multiple classifier fusion techniques were developed. The developed methods, in general, use either the MU firing pattern or MUP-shape consistency of a MUPT, or both, to estimate its overall validity.
The performance of the developed systems was evaluated using a variety of MUPTs obtained from the decomposition of several simulated and real intramuscular EMG signals. Based on the results achieved, the methods that use only shape or only firing pattern information had higher generalization error than the systems that use both types of information. For the classifiers that use MU firing pattern information of a MUPT to determine its validity, the accuracy for invalid trains decreases as the number of missed-classification errors in trains increases. Likewise, for the methods that use MUP-shape information of a MUPT to determine its validity, the classification accuracy for invalid trains decreases as the within-train similarity of the invalid trains increase. Of the systems that use both shape and firing pattern information, those that separately estimate MU firing pattern validity and MUP-shape validity and then estimate the overall validity of a train by fusing these two indices using trainable fusion methods performed better than the single classifier scheme that estimates MUPT validity using a single classifier, especially for the real data used. Overall, the multi-classifier constructed using trainable logistic regression to aggregate base classifier outputs had the best performance with overall accuracy of 99.4% and 98.8% for simulated and real data, respectively.
The possibility of formulating an algorithm for automated editing MUPTs contaminated with a high number of false-classification errors (FCEs) during decomposition was also investigated. Ultimately, a robust method was developed for this purpose. Using a supervised classifier and MU firing pattern information provided by each MUPT, the developed algorithm first determines whether a given train is contaminated by a high number of FCEs and needs to be edited. For contaminated MUPTs, the method uses both MU firing pattern and MUP shape information to detect MUPs that were erroneously assigned to the train. Evaluation based on simulated and real MU firing patterns, shows that contaminated MUPTs could be detected with 84% and 81% accuracy for simulated and real data, respectively. For a given contaminated MUPT, the algorithm on average correctly classified around 92.1% of the MUPs of the MUPT.
The effectiveness of using the developed MUPT validation systems and the MUPT editing methods during EMG signal decomposition was investigated by integrating these algorithms into a certainty-based EMG signal decomposition algorithm. Overall, the decomposition accuracy for 32 simulated and 30 real EMG signals was improved by 7.5% (from 86.7% to 94.2%) and 3.4% (from 95.7% to 99.1%), respectively. A significant improvement was also achieved in correctly estimating the number of MUPTs represented in a set of detected MUPs. The simulated and real EMG signals used were comprised of 3–11 and 3–15 MUPTs, respectively.
|
292 |
System of Systems Engineering for Policy DesignBristow, Michele Mei-Ting January 2013 (has links)
A system of systems (SoS) framework is proposed for policy design that takes into account the value systems of multiple participants, harnesses the complexity of strategic interactions among participants, and confronts the risks and uncertainties present in participants’ decision making. SoS thinking provides an integrative and adaptive mindset, which is needed to tackle policy challenges characterized by conflict, complexity, and uncertainty. With the aim of putting SoS thinking into practice, operational methods and tools are presented herein. Specifically, SoS engineering methodologies to create value system models, agent-based models of competitive and cooperative behaviour under conflict, and risk management models are developed and integrated into the framework. The proposed structure, methods and tools can be utilized to organize policy design discourse. Communication among participants involved in the policy discussion is structured around SoS models, which are used to integrate multiple perspectives of a system and to test the effectiveness of policies in achieving desirable outcomes under varying conditions.
In order to demonstrate the proposed methods and tools that have been developed to enliven policy design discourse, a theoretical common-pool resources dilemma is utilized. The generic application illustrates the methodology of constructing ordinal preferences from values. Also, it is used to validate the agent-based modeling and simulation platform as a tool to investigate strategic interactions among participants and harness the potential to influence and enable participants to achieve desirable outcomes. A real-world common pool resources dilemma in the provisioning and security considerations of the Straits of Malacca and Singapore is examined and employed as a case study for applying strategic conflict models in risk management. Overall, this thesis advances the theory and application of SoS engineering and focuses on understanding value systems, handling complexity in terms of conflict dynamics, and finally, enhancing risk management.
|
293 |
Stochastic Nested Aggregation for Images and Random FieldsWesolkowski, Slawomir Bogumil 27 March 2007 (has links)
Image segmentation is a critical step in building a computer vision algorithm that is able to distinguish between separate objects in an image scene. Image segmentation is based on two fundamentally intertwined components: pixel comparison and pixel grouping. In the pixel comparison step, pixels are determined to be similar or different from each other. In pixel grouping, those pixels which are similar are grouped together to form meaningful regions which can later be processed. This thesis makes original contributions to both of those areas.
First, given a Markov Random Field framework, a Stochastic Nested Aggregation (SNA) framework for pixel and region grouping is presented and thoroughly analyzed using a Potts model. This framework is applicable in general to graph partitioning and discrete estimation problems where pairwise energy models are used. Nested aggregation reduces the computational complexity of stochastic algorithms such as Simulated Annealing to order O(N) while at the same time allowing local deterministic approaches such as Iterated Conditional Modes to escape most local minima in order to become a global deterministic optimization method. SNA is further enhanced by the introduction of a Graduated Models strategy which allows an optimization algorithm to converge to the model via several intermediary models. A well-known special case of Graduated Models is the Highest Confidence First algorithm which merges pixels or regions that give the highest global energy decrease. Finally, SNA allows us to use different models at different levels of coarseness. For coarser levels, a mean-based Potts model is introduced in order to compute region-to-region gradients based on the region mean and not edge gradients.
Second, we develop a probabilistic framework based on hypothesis testing in order to achieve color constancy in image segmentation. We develop three new shading invariant semi-metrics based on the Dichromatic Reflection Model. An RGB image is transformed into an R'G'B' highlight invariant space to remove any highlight components, and only the component representing color hue is preserved to remove shading effects. This transformation is applied successfully to one of the proposed distance measures. The probabilistic semi-metrics show similar performance to vector angle on images without saturated highlight pixels; however, for saturated regions, as well as very low intensity pixels, the probabilistic distance measures outperform vector angle.
Third, for interferometric Synthetic Aperture Radar image processing we apply the Potts model using SNA to the phase unwrapping problem. We devise a new distance measure for identifying phase discontinuities based on the minimum coherence of two adjacent pixels and their phase difference. As a comparison we use the probabilistic cost function of Carballo as a distance measure for our experiments.
|
294 |
Defect Detection Via THz Imaging: Potentials & LimitationsHoushmand, Kaveh 22 May 2008 (has links)
Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. This was due to difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. This non-destructive and non-contact imaging technique can penetrate through diverse materials such that internal structures, in some cases invisible to other imaging modalities, can be visualized.
Today, there are variety of techniques available to generate and detect THz waves in both pulsed and continuous fashion in two different geometries; transition, and reflection modes. In this thesis continuous wave THz imaging was employed for higher spatial resolution.
However, with any new technology comes its challenges; automated processing of THz images can be quite cumbersome. Low contrast and the presence of a widely unknown type of noise make the analysis of these images difficult. In this work, there is an attempt to detect defects in composite material via segmentation by using a Terahertz imaging system. According to our knowledge, this is the first time that this type of materials are being tested under Terahertz cameras to detect manufacturing defects in aerospace industry.
In addition, segmentation accuracy of THz images have been investigated by using a phantom. Beyond the defect detection for composite materials, this can establish some general knowledge about Terahertz imaging, its capabilities and limitations.
To be able to segment the THz images successfully, pre-processing techniques are inevitable. In this thesis, a variety of different image processing techniques, self-developed or available from literature, have been employed for image enhancement. These methods range from filtering to contrast adjustment to fusion of phase and amplitude images by using fuzzy set theory, to just name a few. The result of pre-procssing and segmentation methods demonstrates promising outcome for future work in this field.
|
295 |
Human-Inspired Robot Task Teaching and LearningWu, Xianghai 28 October 2009 (has links)
Current methods of robot task teaching and learning have several limitations: highly-trained personnel are usually required to teach robots specific tasks; service-robot systems are limited in learning different types of tasks utilizing the same system; and the teacher’s expertise in the task is not well exploited. A human-inspired robot-task teaching and learning method is developed in this research with the aim of allowing general users to teach different object-manipulation tasks to a service robot, which will be able to adapt its learned tasks to new task setups.
The proposed method was developed to be interactive and intuitive to the user. In a closed loop with the robot, the user can intuitively teach the tasks, track the learning states of the robot, direct the robot attention to perceive task-related key state changes, and give timely feedback when the robot is practicing the task, while the robot can reveal its learning progress and refine its knowledge based on the user’s feedback.
The human-inspired method consists of six teaching and learning stages: 1) checking and teaching the needed background knowledge of the robot; 2) introduction of the overall task to be taught to the robot: the hierarchical task structure, and the involved objects and robot hand actions; 3) teaching the task step by step, and directing the robot to perceive important state changes; 4) demonstration of the task in whole, and offering vocal subtask-segmentation cues in subtask transitions; 5) robot learning of the taught task using a flexible vote-based algorithm to segment the demonstrated task trajectories, a probabilistic optimization process to assign obtained task trajectory episodes (segments) to the introduced subtasks, and generalization of the taught task trajectories in different reference frames; and 6) robot practicing of the learned task and refinement of its task knowledge according to the teacher’s timely feedback, where the adaptation of the learned task to new task setups is achieved by blending the task trajectories generated from pertinent frames.
An agent-based architecture was designed and developed to implement this robot-task teaching and learning method. This system has an interactive human-robot teaching interface subsystem, which is composed of: a) a three-camera stereo vision system to track user hand motion; b) a stereo-camera vision system mounted on the robot end-effector to allow the robot to explore its workspace and identify objects of interest; and c) a speech recognition and text-to-speech system, utilized for the main human-robot interaction.
A user study involving ten human subjects was performed using two tasks to evaluate the system based on time spent by the subjects on each teaching stage, efficiency measures of the robot’s understanding of users’ vocal requests, responses, and feedback, and their subjective evaluations. Another set of experiments was done to analyze the ability of the robot to adapt its previously learned tasks to new task setups using measures such as object, target and robot starting-point poses; alignments of objects on targets; and actual robot grasp and release poses relative to the related objects and targets. The results indicate that the system enabled the subjects to naturally and effectively teach the tasks to the robot and give timely feedback on the robot’s practice performance. The robot was able to learn the tasks as expected and adapt its learned tasks to new task setups. The robot properly refined its task knowledge based on the teacher’s feedback and successfully applied the refined task knowledge in subsequent task practices. The robot was able to adapt its learned tasks to new task setups that were considerably different from those in the demonstration. The alignments of objects on the target were quite close to those taught, and the executed grasping and releasing poses of the robot relative to objects and targets were almost identical to the taught poses. The robot-task learning ability was affected by limitations of the vision-based human-robot teleoperation interface used in hand-to-hand teaching and the robot’s capacity to sense its workspace. Future work will investigate robot learning of a variety of different tasks and the use of more robot in-built primitive skills.
|
296 |
Stochastic Nested Aggregation for Images and Random FieldsWesolkowski, Slawomir Bogumil 27 March 2007 (has links)
Image segmentation is a critical step in building a computer vision algorithm that is able to distinguish between separate objects in an image scene. Image segmentation is based on two fundamentally intertwined components: pixel comparison and pixel grouping. In the pixel comparison step, pixels are determined to be similar or different from each other. In pixel grouping, those pixels which are similar are grouped together to form meaningful regions which can later be processed. This thesis makes original contributions to both of those areas.
First, given a Markov Random Field framework, a Stochastic Nested Aggregation (SNA) framework for pixel and region grouping is presented and thoroughly analyzed using a Potts model. This framework is applicable in general to graph partitioning and discrete estimation problems where pairwise energy models are used. Nested aggregation reduces the computational complexity of stochastic algorithms such as Simulated Annealing to order O(N) while at the same time allowing local deterministic approaches such as Iterated Conditional Modes to escape most local minima in order to become a global deterministic optimization method. SNA is further enhanced by the introduction of a Graduated Models strategy which allows an optimization algorithm to converge to the model via several intermediary models. A well-known special case of Graduated Models is the Highest Confidence First algorithm which merges pixels or regions that give the highest global energy decrease. Finally, SNA allows us to use different models at different levels of coarseness. For coarser levels, a mean-based Potts model is introduced in order to compute region-to-region gradients based on the region mean and not edge gradients.
Second, we develop a probabilistic framework based on hypothesis testing in order to achieve color constancy in image segmentation. We develop three new shading invariant semi-metrics based on the Dichromatic Reflection Model. An RGB image is transformed into an R'G'B' highlight invariant space to remove any highlight components, and only the component representing color hue is preserved to remove shading effects. This transformation is applied successfully to one of the proposed distance measures. The probabilistic semi-metrics show similar performance to vector angle on images without saturated highlight pixels; however, for saturated regions, as well as very low intensity pixels, the probabilistic distance measures outperform vector angle.
Third, for interferometric Synthetic Aperture Radar image processing we apply the Potts model using SNA to the phase unwrapping problem. We devise a new distance measure for identifying phase discontinuities based on the minimum coherence of two adjacent pixels and their phase difference. As a comparison we use the probabilistic cost function of Carballo as a distance measure for our experiments.
|
297 |
Defect Detection Via THz Imaging: Potentials & LimitationsHoushmand, Kaveh 22 May 2008 (has links)
Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. This was due to difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. This non-destructive and non-contact imaging technique can penetrate through diverse materials such that internal structures, in some cases invisible to other imaging modalities, can be visualized.
Today, there are variety of techniques available to generate and detect THz waves in both pulsed and continuous fashion in two different geometries; transition, and reflection modes. In this thesis continuous wave THz imaging was employed for higher spatial resolution.
However, with any new technology comes its challenges; automated processing of THz images can be quite cumbersome. Low contrast and the presence of a widely unknown type of noise make the analysis of these images difficult. In this work, there is an attempt to detect defects in composite material via segmentation by using a Terahertz imaging system. According to our knowledge, this is the first time that this type of materials are being tested under Terahertz cameras to detect manufacturing defects in aerospace industry.
In addition, segmentation accuracy of THz images have been investigated by using a phantom. Beyond the defect detection for composite materials, this can establish some general knowledge about Terahertz imaging, its capabilities and limitations.
To be able to segment the THz images successfully, pre-processing techniques are inevitable. In this thesis, a variety of different image processing techniques, self-developed or available from literature, have been employed for image enhancement. These methods range from filtering to contrast adjustment to fusion of phase and amplitude images by using fuzzy set theory, to just name a few. The result of pre-procssing and segmentation methods demonstrates promising outcome for future work in this field.
|
298 |
Human-Inspired Robot Task Teaching and LearningWu, Xianghai 28 October 2009 (has links)
Current methods of robot task teaching and learning have several limitations: highly-trained personnel are usually required to teach robots specific tasks; service-robot systems are limited in learning different types of tasks utilizing the same system; and the teacher’s expertise in the task is not well exploited. A human-inspired robot-task teaching and learning method is developed in this research with the aim of allowing general users to teach different object-manipulation tasks to a service robot, which will be able to adapt its learned tasks to new task setups.
The proposed method was developed to be interactive and intuitive to the user. In a closed loop with the robot, the user can intuitively teach the tasks, track the learning states of the robot, direct the robot attention to perceive task-related key state changes, and give timely feedback when the robot is practicing the task, while the robot can reveal its learning progress and refine its knowledge based on the user’s feedback.
The human-inspired method consists of six teaching and learning stages: 1) checking and teaching the needed background knowledge of the robot; 2) introduction of the overall task to be taught to the robot: the hierarchical task structure, and the involved objects and robot hand actions; 3) teaching the task step by step, and directing the robot to perceive important state changes; 4) demonstration of the task in whole, and offering vocal subtask-segmentation cues in subtask transitions; 5) robot learning of the taught task using a flexible vote-based algorithm to segment the demonstrated task trajectories, a probabilistic optimization process to assign obtained task trajectory episodes (segments) to the introduced subtasks, and generalization of the taught task trajectories in different reference frames; and 6) robot practicing of the learned task and refinement of its task knowledge according to the teacher’s timely feedback, where the adaptation of the learned task to new task setups is achieved by blending the task trajectories generated from pertinent frames.
An agent-based architecture was designed and developed to implement this robot-task teaching and learning method. This system has an interactive human-robot teaching interface subsystem, which is composed of: a) a three-camera stereo vision system to track user hand motion; b) a stereo-camera vision system mounted on the robot end-effector to allow the robot to explore its workspace and identify objects of interest; and c) a speech recognition and text-to-speech system, utilized for the main human-robot interaction.
A user study involving ten human subjects was performed using two tasks to evaluate the system based on time spent by the subjects on each teaching stage, efficiency measures of the robot’s understanding of users’ vocal requests, responses, and feedback, and their subjective evaluations. Another set of experiments was done to analyze the ability of the robot to adapt its previously learned tasks to new task setups using measures such as object, target and robot starting-point poses; alignments of objects on targets; and actual robot grasp and release poses relative to the related objects and targets. The results indicate that the system enabled the subjects to naturally and effectively teach the tasks to the robot and give timely feedback on the robot’s practice performance. The robot was able to learn the tasks as expected and adapt its learned tasks to new task setups. The robot properly refined its task knowledge based on the teacher’s feedback and successfully applied the refined task knowledge in subsequent task practices. The robot was able to adapt its learned tasks to new task setups that were considerably different from those in the demonstration. The alignments of objects on the target were quite close to those taught, and the executed grasping and releasing poses of the robot relative to objects and targets were almost identical to the taught poses. The robot-task learning ability was affected by limitations of the vision-based human-robot teleoperation interface used in hand-to-hand teaching and the robot’s capacity to sense its workspace. Future work will investigate robot learning of a variety of different tasks and the use of more robot in-built primitive skills.
|
299 |
Real-time Dynamic Simulation of Constrained Multibody Systems using Symbolic ComputationUchida, Thomas Kenji January 2011 (has links)
The main objective of this research is the development of a framework for the automatic generation of systems of kinematic and dynamic equations that are suitable for real-time applications. In particular, the efficient simulation of constrained multibody systems is addressed. When modelled with ideal joints, many mechanical systems of practical interest contain closed kinematic chains, or kinematic loops, and are most conveniently modelled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques.
In this work, the equations of motion are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. The theory of Gröbner bases is then used to triangularize the kinematic constraint equations, thereby producing recursively solvable systems for calculating the dependent generalized coordinates given values of the independent coordinates. For systems that can be fully triangularized, the kinematic constraints are always satisfied exactly and in a fixed amount of time. Where full triangularization is not possible, a block-triangular form can be obtained that still results in more efficient simulations than existing iterative and constraint stabilization techniques.
The proposed approach is applied to the kinematic and dynamic simulation of several mechanical systems, including six-bar mechanisms, parallel robots, and two vehicle suspensions: a five-link and a double-wishbone. The efficient kinematic solution generated for the latter is used in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardware- and operator-in-the-loop driving simulator. The Gröbner basis approach is particularly suitable for situations requiring very efficient simulations of multibody systems whose parameters are constant, such as the plant models in model-predictive control strategies and the vehicle models in driving simulators.
|
300 |
System of Systems Engineering for Policy DesignBristow, Michele Mei-Ting January 2013 (has links)
A system of systems (SoS) framework is proposed for policy design that takes into account the value systems of multiple participants, harnesses the complexity of strategic interactions among participants, and confronts the risks and uncertainties present in participants’ decision making. SoS thinking provides an integrative and adaptive mindset, which is needed to tackle policy challenges characterized by conflict, complexity, and uncertainty. With the aim of putting SoS thinking into practice, operational methods and tools are presented herein. Specifically, SoS engineering methodologies to create value system models, agent-based models of competitive and cooperative behaviour under conflict, and risk management models are developed and integrated into the framework. The proposed structure, methods and tools can be utilized to organize policy design discourse. Communication among participants involved in the policy discussion is structured around SoS models, which are used to integrate multiple perspectives of a system and to test the effectiveness of policies in achieving desirable outcomes under varying conditions.
In order to demonstrate the proposed methods and tools that have been developed to enliven policy design discourse, a theoretical common-pool resources dilemma is utilized. The generic application illustrates the methodology of constructing ordinal preferences from values. Also, it is used to validate the agent-based modeling and simulation platform as a tool to investigate strategic interactions among participants and harness the potential to influence and enable participants to achieve desirable outcomes. A real-world common pool resources dilemma in the provisioning and security considerations of the Straits of Malacca and Singapore is examined and employed as a case study for applying strategic conflict models in risk management. Overall, this thesis advances the theory and application of SoS engineering and focuses on understanding value systems, handling complexity in terms of conflict dynamics, and finally, enhancing risk management.
|
Page generated in 0.0807 seconds