• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image Retrieval Using a Combination of Keywords and Image Features

Reddy, Vishwanath Reddy Keshi, Bandikolla, Praveen January 2008 (has links)
Information retrieval systems are playing an important role in our day to day life for getting the required information. Many text retrieval systems are available and are working successfully. Even though internet is full of other media like images, audio and video, retrieval systems for these media are rare and have not achieved success as that of text retrieval systems. Image retrieval systems are useful in many applications; there is a high demand for effective and efficient tool for image organization and retrieval as per users need. Images are classified into text based image retrieval and content based image retrieval, we proposed a text based image retrieval system, which makes use of ontology to make the retrieval process intelligent. We worked on Cricket World Cup 2007. We combined text based image retrieval approach with content based image retrieval, which uses color and texture as basic low level features. / kvishu223@gmail.com, pravs72@yahoo.co.in.
2

Taxonomy Based Image Retrieval : Taxonomy Based Image Retrieval using Data from Multiple Sources / Taxonomibaserad Bildsök

Larsson, Jimmy January 2016 (has links)
With a multitude of images available on the Internet, how do we find what we are looking for? This project tries to determine how much the precision and recall of search queries is improved by using a word taxonomy on traditional Text-Based Image Search and Content-Based Image Search. By applying a word taxonomy to different data sources, a strong keyword filter and a keyword extender were implemented and tested. The results show that depending on the implementation, the precision or the recall can be increased. By using a similar approach on real life implementations, it is possible to force images with higher precisions to the front while keeping a high recall value, thus increasing the experienced relevance of image search. / Med den mängd bilder som nu finns tillgänglig på Internet, hur kan vi fortfarande hitta det vi letar efter? Denna uppsats försöker avgöra hur mycket bildprecision och bildåterkallning kan öka med hjälp av appliceringen av en ordtaxonomi på traditionell Text-Based Image Search och Content-Based Image Search. Genom att applicera en ordtaxonomi på olika datakällor kan ett starkt ordfilter samt en modul som förlänger ordlistor skapas och testas. Resultaten pekar på att beroende på implementationen så kan antingen precisionen eller återkallningen förbättras. Genom att använda en liknande metod i ett verkligt scenario är det därför möjligt att flytta bilder med hög precision längre fram i resultatlistan och samtidigt behålla hög återkallning, och därmed öka den upplevda relevansen i bildsök.

Page generated in 0.0248 seconds