• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery

Matus, Eric Robert 30 October 2006 (has links)
A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short string (SS) is completed in the top quarter of the reservoir, while the long string (LS) is completed in the bottom quarter of the reservoir. The method requires an initial warm-up stage where steam is injected into both strings for 21 days; then the LS is opened to production while the SS continues to inject steam for 14 days. After the initial warm-up, the following schedule is repeated: the LS is closed and steam is injected in the SS for 21 days; then steam injection is stopped and the LS is opened to production for 180 days. There is no soak period. Simulations to compare the performance of the TINBOP method against that of a conventional cyclic steam injector (perforated across the whole reservoir) have been made. Three reservoir types were simulated using 2-D radial, black oil models: Hamaca (9°API), San Ardo (12°API) and the SPE fourth comparative solution project (14°API). For the first two types, a 20x1x20 10-acre model was used that incorporated typical rock and fluid properties for these fields. Simulation results indicate oil recovery after 10 years was 5.7-27% OIIP with TINBOP, that is 57-93% higher than conventional cyclic steam injection (3.3-14% OIIP). Steam-oil ratios were also decreased with TINBOP (0.8-3.1%) compared to conventional (1.2-5.3%), resulting from the improved reservoir heating efficiency.

Page generated in 0.018 seconds