181 |
Steady Flow and Pulsed Performance Trends of High Concentration DMFCsMcCarthy, Larry K. 12 January 2006 (has links)
Direct Methanol Fuel Cells (DMFCs) are a promising source of energy due to their potentially high energy density, facilitated fuel delivery and storage, and precluded fuel processing. However, DMFCs have several challenges which need to be resolved before they can replace existing energy sources. Some of the challenges include lower power density, relatively high cost, and uncertain reliability. These issues are all promoted, at least in part, by the methanol crossover phenomenon, wherein membrane permeability allows the undesirable species transport of methanol from anode to cathode. This phenomenon also causes the requirement of dilute fuel mixtures, which is undesirable from an energy density viewpoint.
Steady flow polarization curves were first analyzed at various concentrations. An optimal concentration range was found wherein both methanol crossover and concentration losses were effectively minimized. During the study of transient phenomena, the fuel was first temporarily discontinued. It was found that a significant cell potential enhancement occurred due to anodic fuel concentration reduction and thus depleting the reactant crossover. The percentage voltage increase was considerably greater at higher concentrations. Based on the fuel discontinuation, a hydraulic pulsing operation was developed and tested. During some of these continuous pulsing schemes, fuel discontinuation did not result in an instantaneous cell potential enhancement mainly due to the internal inertia of the membrane. Nonetheless, a significant cell potential and fuel efficiency enhancement was observed. In addition, the pulse of both fuel and current density resulted in a significant power density increase.
|
182 |
Transient Rheology of Stimuli Responsive Hydrogels: Integrating Microrheology and MicrofluidicsSato, Jun 30 October 2006 (has links)
A new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-response measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. With the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft biomaterials could lead to erroneous conclusions about microstructural dynamics. Systematic investigations by varying key parameters, like molecular structure, gel concentration, salt concentration, and tracer particle size for microrheology, revealed that subtle variations in molecular architecture can cause major structural and microrheological changes in response dynamics. Moreover, the results showed that the method can be applied for studying gel formation and breakup kinetics. The research in this thesis facilitates the design of solvent-responsive soft materials with appropriate microstructural dynamics for in vivo applications like tissue engineering and drug delivery, and can also be applied to study the effect of solvents on self-assembly mechanisms in other responsive soft materials, such as polymer solutions and colloidal dispersions.
|
183 |
Simulation Of Flow Transients In Liquid Pipeline SystemsKoc, Gencer 01 November 2007 (has links) (PDF)
ABSTRACT
SIMULATION OF FLOW TRANSIENTS IN LIQUID PIPELINE SYSTEMS
Koç / , Genç / er
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. O. Cahit Eralp
November 2007, 142 pages
In liquid pipeline systems, transient flow is the major cause of pipeline damages.
Transient flow is a situation where the pressure and flow rate in the pipeline rapidly
changes with time. Flow transients are also known as surge and Waterhammer which
originates from the hammering sound of the water in the taps or valves. In liquid
pipelines, preliminary design parameters are chosen for steady state operations, but a
transient check is always necessary. There are various types of transient flow
situations such as valve closures, pump trips and flow oscillations. During a transient
flow, pressure inside the pipe may increase or decrease in an unexpected way that
cannot be foreseen by a steady state analysis. Flow transients should be considered
by a complete procedure that simulates possible transient flow scenarios and by the
obtained results, precautions should be taken.
There are different computational methods that can be used to solve and simulate
flow transients in computer environment. All computational methods utilize basic
v
flow equations which are continuity and momentum equations. These equations are
nonlinear differential equations and some mathematical tools are necessary to make
these equations linear. In this thesis a computer program is coded that utilizes
&ldquo / Method of Characteristics&rdquo / which is a numerical method in solving partial
differential equations. In pipeline hydraulics, two partial differential equations,
continuity and momentum equations are solved together, in order to obtain the
pressure and flow rate values in the pipeline, during transient flow. In this thesis,
MATLAB 7.1 is used as the programming language and obtained code is converted
to a C# language to be able to integrate the core of the program with a user friendly
Graphical User Interface (GUI).
The Computer program is verified for different scenarios with the available real
pipeline data and results of various reputable agencies. The output of the computer
program is the tabulated pressure and flow rate values according to time indexes and
graphical representations of these values. There are also prompts for users warning
about possible dangerous operation modes of the pipeline components.
|
184 |
Investigation Of Waterhammer Problems In The Penstocks Of Small Hydropower PlantsCalamak, Melih 01 September 2010 (has links) (PDF)
Waterhammer is an unsteady hydraulic problem which is commonly found in closed conduits of hydropower plants, water distribution networks and liquid pipeline systems. Due to either a malfunction of the system or inadequate operation conditions, pipeline may collapse or burst erratically resulting in substantial damages, and human losses in some cases. In this thesis, time dependent flow situations in the penstocks of small hydropower plants are investigated. A software, HAMMER, that utilizes method of characteristics for solving nonlinear differential equations of transient flow is used in the study. In two case studies, various operation conditions such as load rejection, load acceptance and instant load rejection are studied. The parameters and situations affecting pressure and turbine speed rises are investigated. Computed and available measured values are found to be very close. Also, differences between waterhammer responses of the Francis and Pelton turbines are revealed. Finally, specific protective measures are suggested to either diminish and/or avoid the harmful effects of waterhammer problems in small hydropower plants.
|
185 |
Use Of Air Chambers Against Waterhammer In PenstocksAdal, Birand 01 September 2011 (has links) (PDF)
All pipeline systems are susceptible to water hammer that can cripple critical infrastructure. One effective method to relieve excessive waterhammer pressures in pipelines is to use air chambers. This study aims to develop an empirical procedure for the quick analysis of penstock-turbine systems to determine dimensions and operating conditions of air-chambers that can effectively diminish the transient phenomena after sudden changes of flow rate in the system. A numerical study has been carried out by obtaining repeated solutions for variable system parameters using a commercial software. The relief brought by air chambers is found to approach to an asymptotic value for increasing chamber volumes. It is possible to determine the required chamber volume for a given discharge to limit the waterhammer pressures at a prescribed level in a given penstock-turbine system using the charts produced in the study.
|
186 |
Assessment of passive decay heat removal in the General Atomics Modular Helium ReactorCocheme, Francois Guilhem 17 February 2005 (has links)
The purpose of this report is to present the results of the study and analysis of loss-of-coolant and loss-of-flow simulations performed on the Modular Helium Reactor developed by General Atomics using the thermal-hydraulics code RELAP5-3D/ATHENA. The MHR is a high temperature gas cooled reactor. It is a prismatic core concept for New Generation Nuclear Plant (NGNP). Very few reactors of that kind have been designed in the past. Furthermore, the MHR is supposed to be a highly passively safe concept. So there are high needs for numerical simulations in order to confirm the design. The project is dedicated to the assessment of the passive decay heat capabilities of the reactor under abnormal transient conditions. To comply with the requirements of the NGNP, fuel and structural temperatures must be kept under design safety limits under any circumstances. During the project, the MHR has been investigated: first under steady-state conditions and then under transient settings. The project confirms that satisfying passive decay heat removal by means of natural heat transfer mechanisms (convection, conduction and radiation) occurs.
|
187 |
Protection system representation in the Electromagnetic Transients Program /Chaudhary, Arvind K. S., January 1991 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 187-192). Also available via the Internet.
|
188 |
Thermal modeling, analysis, and control of a space suitCampbell, Anthony B. January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves [217]-221). Also available on the Internet.
|
189 |
A generic approach to network modeling for harmonic analysisMaitra, Arindam. January 2002 (has links)
Thesis (Ph. D.)--Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
|
190 |
Design of an RF CMOS ultra-wideband amplifier using parasitic-aware synthesis and optimization /Park, Jinho. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 105-109).
|
Page generated in 0.0151 seconds