• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 26
  • 21
  • 12
  • 6
  • 6
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 291
  • 74
  • 70
  • 64
  • 57
  • 56
  • 46
  • 46
  • 33
  • 31
  • 30
  • 28
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Outrageous orchid organellar genomes: Structural evolution and composition

Valencia Duarte, Janice E 01 May 2022 (has links) (PDF)
Organellar genomes are remnants of more complex bacterial genomes reduced until reach the simplest and most efficient content. Regularly depicted as circular, these genomes can form other structures, like linear, ramified, or entangled chromosomes, or a combination of those. Nonetheless, their gene content is nearly constant throughout flowering plants based on the multiple plastid genomes (plastomes) and the comparatively few mitochondrial genomes (mitogenomes) sequenced to date. Here, I explored the evolution of the organellar genomes in orchids from a phylogenetic perspective. For this research, plastomes and mitogenomes were assembled from short pair-ended reads obtained using Illumina sequencing technology. I developed a workflow to confidently recover plastid and mitochondrial sequences, even for regions without references in databases (chapter 1). The comparison among taxa from all orchid subfamilies identified patterns of gain, loss and rearrangement of coding and non-coding DNA. Plastid and mitochondrial protein-coding genes present in all samples were used to reconstruct the phylogenetic history of orchids that was coincident in terms of topology (chapter 1). Plastomes can suffer degradation in heterotrophic species, however that is not true for mixotrophic species, as I discovered by comparing albino and green individuals of the orchid Epipactis helleborine. I found that albino plants did not suffer loss of any genes and that the sequence was almost identical to the photosynthetic plants (chapter 2). In contrast to what it is observed in angiosperm plastomes, for which the structure, content and size is conserved, plant mitogenomes are highly variable in size, which can increase by the acquisition of external DNA via horizontal gene transfer. In some orchids, the mitogenome hosts a sixteen-gene sequence transferred from a fungal mitogenome to a clade of epidendroid orchids 12-60 My ago, and has been fragmented, conserved, or fully lost since (chapter 3). Transfer RNA genes are variable in number and origin throughout orchid evolution. I identified that they had four different sources, three novel possible replacement events of the native genes with plastid-origin genes, seven tRNA remodeling events in orchids and three more in other angiosperms (chapter 4). Our comparative studies conclude that there are three main dynamics that shape the organellar genomes: gain, loss and rearrangement of genomic content. I presented examples of them in orchids (chapter 5). Additionally, I created two sets of genomic resources: one comprises eighteen new orchid mitogenomes and plastomes, and the second consists of a well-curated set of references of tRNA genes in mitogenomes discriminated by origin. These results contribute to increasing the knowledge of angiosperm organellar genomes and highlight the importance of comprehensive studies that allow the interpretation of the genomic changes in the light of the phylogenetic evolution.
112

Characterizing Modified Nucleosides in RNA by LC/UV/MS

Russell, Susan P. January 2012 (has links)
No description available.
113

Biochemical characterization of catalytic mechanism and substrate recognition by the atypical SPOUT tRNA methyltransferase, Trm10

Krishnamohan, Aiswarya Lakshmi January 2017 (has links)
No description available.
114

Analysis of Stem I elements required for antitermination of the T box riboswitch

Kreuzer, Kiel D. 11 September 2018 (has links)
No description available.
115

Identification and Characterization of tRNA Derived SINE Variants

Altieri, Madison Nichole 12 August 2022 (has links)
No description available.
116

Split Deoxyribozyme Probe For Efficient Detection of Highly Structured RNA Targets

Solarez, Sheila Raquel 01 January 2018 (has links)
Transfer RNAs (tRNAs) are known for their role as adaptors during translation of the genetic information and as regulators for gene expression; uncharged tRNAs regulate global gene expression in response to changes in amino acid pools in the cell. Aminoacylated tRNAs play a role in non-ribosomal peptide bond formation, post-translational protein labeling, modification of phospholipids in the cell membrane, and antibiotic biosynthesis. [1] tRNAs have a highly stable structure that can present a challenge for their detection using conventional techniques. [2] To enable signal amplification and lower detection limits, a split probe - split deoxyribozyme (sDz or BiDz) probe, which uses a double-labeled fluorogenic substrate as a reporter – has been introduced. In this project we developed an assay based on sDz probe to detect yeast tRNAPhe as a proof-of-principle highly structured target. An sDz probe was designed specific to tRNAphe that could efficiently unwind stable secondary and tertiary structure of the target RNA thereby providing an efficient tool for tRNA detection. [3]The efficiency of the developed sDz probe was compared with a currently used state-of-the-art hybridization probe – molecular beacon probe. The results obtained in the project further demonstrate the power of sDz probes for the detection of highly structured RNA analytes. The split probes show signal amplification capabilities in detection of structured analytes, which will benefit diagnostics, fundamental molecular biology research and therapeutic fields.
117

Insights Into the Decoding Mechanism from Studies of Mutant Ribosomes

McClory, Sean P. January 2013 (has links)
No description available.
118

Biochemical Characterization of <i>Trypanosoma cruzi </i> Prolyl-tRNA Synthetase

Oshule, Paul Sifuna 01 August 2014 (has links)
No description available.
119

Characterization of the <i>in vitro</i> and <i>in vivo</i> specificity of <i>trans</i>-editing proteins and interacting aminoacyl-tRNA synthetases

Liu, Ziwei January 2014 (has links)
No description available.
120

Mass Exclusion list for RNA modification mapping using LC-MS/MS

Cao, Xiaoyu 16 June 2017 (has links)
No description available.

Page generated in 0.0296 seconds