131 |
Evolutionary synthetic biology: structure/function relationships within the protein translation systemCacan, Ercan 06 September 2011 (has links)
Production of mutant biological molecules for understanding biological principles or as therapeutic agents has gained considerable interest recently. Synthetic genes are today being widely used for production of such molecules due to the substantial decrease in the costs associated with gene synthesis technology. Along one such line, we have engineered tRNA genes in order to dissect the effects of G:U base-pairs on the accuracy of the protein translation machinery. Our results provide greater detail into the thermodynamic interactions between tRNA molecules and an Elongation Factor protein (termed EF-Tu in bacteria and eEF1A in eukaryotes) and how these interactions influence the delivery of aminoacylated tRNAs to the ribosome. We anticipate that our studies not only shed light on the basic mechanisms of molecular machines but may also help us to develop therapeutic or novel proteins that contain unnatural amino acids. Further, the manipulation of the translation machinery holds promise for the development of new methods to understand the origins of life.
Along another line, we have used the power of synthetic biology to experimentally validate an evolutionary model. We exploited the functional diversity contained within the EF-Tu/eEF1A gene family to experimentally validate the model of evolution termed ‘heterotachy’. Heterotachy refers to a switch in a site’s mutational rate class. For instance, a site in a protein sequence may be invariant across all bacterial homologs while that same site may be highly variable across eukaryotic homologs. Such patterns imply that the selective constraints acting on this site differs between bacteria and eukaryotes. Despite intense efforts and large interest in understanding these patterns, no studies have experimentally validated these concepts until now. In the present study, we analyzed EF-Tu/eEF1A gene family members between bacteria and eukaryotes to identify heterotachous patterns (also called Type-I functional divergence). We applied statistical tests to identify sites possibly responsible for biomolecular functional divergence between EF-Tu and eEF1A. We then synthesized protein variants in the laboratory to validate our computational predictions. The results demonstrate for the first time that the identification of heterotachous sites can be specifically implicated in functional divergence among homologous proteins.
In total, this work supports an evolutionary synthetic biology paradigm that in one direction uses synthetic molecules to better understand the mechanisms and constraints governing biomolecular behavior while in another direction uses principles of molecular sequence evolution to generate novel biomolecules that have utility for industry and/or biomedicine.
|
132 |
Cinko jonų apsauginio poveikio kepenų transliacijos sistemai įvertinimas esant toksiniam kadmio jonų poveikiui / Evaluation of protective effects of zinc ions on liver translation system in the present of toxic cadmium ions effectsŠlapikaitė, Laura 16 June 2008 (has links)
Sunkieji metalai yra vieni didžiausių ekologinių nuodų. Kadangi apsinuodijimų sunkiaisiais metalais dažnis tebėra didelis, prevencinės strategijos bei veiksmingo gydymo poreikis išlieka aktualūs.
Savo eksperimentais mes siekėme įvertinti apsauginį cinko jonų poveikį baltymų biosintezės sistemai bei svarbiausiems jos komponentams (tRNR ir aminoacil-tRNR-sintetazėms) esant slopinančiam kadmio jonų poveikiui.
Eksperimentai atlikti su baltosiomis laboratorinėmis pelėmis. Cinko apsauginio poveikio įvertinimui, baltymų biosintezės intensyvumas pelių kepenyse vertintas po 0,5 LD50 CdCl2 (1,6 mg Cd2+ vienam kg kūno masės) ir/arba 0,3 LD50 ZnSO4 (3,1 mg Zn2+ vienam kg kūno masės) tirpalų sušvirkštimo į laboratorinių pelių pilvo ertmę. Baltymų biosintezės intensyvumas pelių organuose nustatytas praėjus 2, 8 ir 24 val. po metalų sušvirkštimo, pagal radioaktyviai žymėto [14C]-leucino įjungimą į naujai susintetintus peptidus ir baltymus. tRNRLeu ir leucyl-tRNR sintetazių aktyvumas nustatytas vykstant reakcijai su [14C]-leucinu.
Gauti rezultatai parodė, jog 2 val. po CdCl2 sušvirkštimo, cinko jonai apsaugojo baltymus sintezuojančią sistemą nuo toksinio kadmio poveikio. Praėjus 8 val. po šių abiejų metalų sušvirkštimo, cinko jonai iš dalies normalizavo baltymų biosintezę, tačiau praėjus 24 val., baltymų biosintezės intensyvumas išliko tokio paties aktyvumo,
kaip ir kadmiu paveiktose pelėse. Vadinasi, praėjus ilgesniam laikui (24 val.), cinko jonai neapsaugo kepenų transliacijos... [toliau žr. visą tekstą] / The aim of this study was to evaluate protective effects of zinc ions on the total protein synthesis in mouse liver and key components of liver translation machinery (tRNR ir aminoacil-tRNR synthetases) in the present of toxic cadmium ions effects.
Experiments were done on white mice using intraperitoneal injections of 0,5 LD50 CdCl2 solution (1,6 mg Cd2+ per 1 kg of body mass) and/or 0,3 LD50 ZnSO4 (3,1 mg Zn2+ per 1 kg of body mass). Protein synthesis was evaluated by incorporation of 14C-labelled leucine into newly synthesized peptides and proteins after 2, 8 and 24 hours of intoxication. Activities of tRNALeu and leucyl-tRNA synthetase were measured by an aminoacylation reaction using 14C-labelled leucine.
The data showed that at the 2nd h after CdCl2 injection, Zn2+ abolished deleterious effect of Cd2+ on the protein synthesis in the liver. Although pronounced activation of the protein synthesis was observed after 8 h of intoxication with either Cd2+ or Zn2+, this effect was lower in the presence of both ions. At the 24th h the protein synthesis was as active as in the liver of Cd-treated mice. Thus, Zn2+ can counteract Cd-induced inhibition of protein synthesis in mice liver only at the early stage of Cd2+ intoxication (at the 2nd h).
Zn2+ abolished deleterious effect of Cd2+ on the activity of leucyl-tRNA synthetase within 24 h of mice intoxication with CdCl2. In vitro conditions, Zn2+ increased the acceptor activity of leucyl-tRNA synthetase only in low (1... [to full text]
|
133 |
Les ARN de transfert, une nouvelle source de petits ARN non-codants chez Arabidopsis thaliana / tRNAs a new source of small non-coding RNAs in Arabidopsis thalianaMorelle, Geoffrey 17 March 2015 (has links)
Au cours de ces 10 dernières années une nouvelle classe de petits ARN non-codants nommés "tRNA-derived fragments" (tRFs) a été caractérisée. Tandis que le rôle canonique des tRNA est bien connu, les raisons pour lesquels des fragments de tRNA s'accumulent dans la cellule restent inconnues. Actuellement, peu d'informations sont disponibles sur leurs biogenèses et leurs rôles biologiques, mais les preuves montrant leur importance dans la régulation de l'expression des gènes augmente régulièrement. Cependant, peu de données sont disponibles chez les plantes. A l'aide d’expérience de "deep-sequencing" et de northern blot nous avons confirmé l'existence d'une grande population en tRFs d'origine variée. A la suite de ces observations, trois questions sont établies. Tout d'abord, quelles sont les enzymes responsables de la biogenèse des tRFs. Ensuite, où les tRFs sont générés. Enfin, est-ce que les tRFs sont des sous-produits de la dégradation des tRNA ou ont-ils une fonction biologique? / During the last decade, a new class of small non-coding RNAs called tRNA-derived fragments (tRFs) has emerged. Whilst the canonic role of tRNA is well-known, the reason(s) why stable tRFs remains in the cell is unknown. Indeed, the number of tRFs has rapidly increased in various evolutionary divergent organisms. To date, only few data on their biogenesis and on their biological roles is known but their importance in the regulation of gene expression and in cell life is expanding. In plants, the existence of tRFs has also been reported but only few data are available. Using deep-sequencing on various small RNA libraries from Arabidopsis thaliana and Northern blots experiments, we confirmed the existence of a large but specific population of tRFs. Following these observations, three questions are addressed. First, what are the enzymes responsible for tRFs biogenesis, second where are tRFs generated and third, are tRFs merely degredation by-products or do they have biological functions?
|
134 |
Changes In Threonyl-Trna Synthetase Expression And Secretion In Response To Endoplasmic Reticulum Stress By Monensin In Ovarian Cancer CellsHammer, Jared Louis 01 January 2017 (has links)
Aminoacyl-tRNA synthetases (ARS) are a family of enzymes that catalyze the charging of amino acids to their cognate tRNA in an aminoacylation reaction. Many members of this family have been found to have secondary functions independent of their primary aminoacylation function. Threonyl-tRNA synthetase (TARS), the ARS responsible for charging tRNA with threonine, is secreted from endothelial cells in response to both vascular endothelial growth factor (VEGF) and tumor necrosis factor-α (TNF-α), and stimulates angiogenesis and cell migration. Here we show a novel experimental approach for studying TARS secretion, and for observing the role of intracellular TARS in the endoplasmic reticulum (ER) stress response and in angiogenesis.
Using Western blotting, immunofluorescence microscopy and RT-qPCR we were able to investigate changes in TARS protein and transcript levels. We initially hypothesized that TARS was secreted by exosomal release, and so we treated a human ovarian cancer cell line (CaOV-3) with monensin, an ionophore that increases exosome production, and VEGF to observe changes in intracellular and extracellular TARS protein. Monensin treatment consistently increased extracellular and intracellular TARS protein, however CD63, an exosome marker protein, levels were unaffected by monensin treatment. VEGF had no effect on intracellular TARS. We therefore hypothesized that the TARS response was a result of ER stress.
The unfolded protein response (UPR) is a series of signaling pathways that are activated upon ER stress. When CaOV-3 cells were treated with increasing concentrations of monensin, intracellular levels of TARS and p-eIF2α, a downstream UPR target, increased accordingly. Monensin increased intracellular TARS protein and transcript levels in CaOV-3 cells. Monensin also increased DNAJB9, an ER chaperone protein, transcript levels, further confirming ER stress. Interestingly, monensin increased VEGF transcript levels about 6-fold. Borrelidin, a natural TARS inhibitor, also increased VEGF transcript levels, and caused an increase in p-eIF2α protein.
Although the mechanism of TARS secretion remains unresolved, these data indicate that intracellular TARS expression increases in response to ER stress by monensin. Given TARS and VEGF transcript expression increased accordingly, it is possible that intracellular TARS may have pro-angiogenic function. Future directions may include investigating TARS interactions with translational control machinery.
|
135 |
How Much Initiator tRNA Does Escherichia Coli Need?Samhita, Laasya January 2013 (has links) (PDF)
The work discussed in this thesis deals with the significance of initiator tRNA gene copy number in Escherichia coli. A summary of the relevant literature discussing the process of protein synthesis, initiator tRNA selection and gene redundancy is presented in Chapter 1.
Chapter 2 describes the ‘Materials and Methods’ used in the experimental work carried out in this thesis. The next three chapters address the significance of initiator tRNA gene copy number in E. coli at three levels; at the level of the molecule (Chapter 3), at the level of the
cell (Chapter 4) and at the level of the population (Chapter 5). At the end of the thesis are appended three publications, which include two papers where I have contributed to work not discussed in this thesis and one review article. A brief summary of chapters 3 to 5 is provided below:
(i) Chapter 3: Can E. coli remain viable without the 3 G-C base pairs in initiator tRNA?
Initiator tRNAs are distinguished from elongator tRNAs by several features key among which are the three consecutive and near universally conserved G-C base pairs found in the anticodon stem of initiator tRNAs. These bases have long been believed to be essential for the functioning of a living cell, both from in vitro and in vivo analysis. In this study, using targeted mutagenesis and an in vivo genetics based approach, we have shown that the 3 G-C base pairs can be dispensed with in E. coli, and the cell can be sustained on unconventional initiator tRNAs lacking the intact 3 G-C base pairs. Our study uncovered the importance of considering the relative amounts of molecules in a living cell, and their role in maintaining the fidelity of protein synthesis.
(ii) Chapter 4: Can elongator tRNAs initiate protein synthesis?
There are two types of tRNAs; initiator tRNA, of which there is one representative in the cell, and elongator tRNAs of which there are several representatives. In this study, we have uncovered initiation of protein synthesis by elongator tRNAs by depleting the initiator tRNA
content in the cell. This raises the possibility that competition between initiator and elongator tRNAs at the P site of the ribosome occurs routinely in the living cell, and provides a basis
for initiation at several 'start' sites in the genome that may not be currently annotated as such. We speculate that such a phenomenon could be exploited by the cell to generate phenotypic diversity without compromising genomic integrity.
(iii) Chapter 5: How many initiator tRNA genes does E. coli need?
E. coli has four genes that encode initiator tRNA, these are the metZWV genes that occur at 63.5 min in the genome, and the metY gene that occurs at 71.5 min in the genome. Earlier studies indicated that the absence of metY had no apparent impact on cell growth. In view of the importance of initiator tRNA gene copy number in maintaining the rate and fidelity of protein synthesis, we examined the fitness of strains carrying different numbers of initiator tRNA genes by competing them against each other in both rich and limited nutrient environments. Our results indicate a link between caloric restriction and protein synthesis mediated by the initiator tRNA gene copy number.
|
136 |
Regulation of aminoacyl-tRNA synthetase genes in <I>Bacillus subtilis</I>Williams-Wagner, Rebecca N. 30 September 2016 (has links)
No description available.
|
137 |
Characterizing the role of the bifunctional glutamyl-prolyl-tRNA synthetase in humandiseasesJin, Danni January 2021 (has links)
No description available.
|
138 |
Probing Editing Domain Conformational Changes Upon E. coli Prolyl-tRNA Synthetase•YbaK Complex FormationSackes, Zubeyde 16 December 2010 (has links)
No description available.
|
139 |
A Temporal Order in 5'- and 3'- Processing of Eukaryotic tRNAHis:Pöhler, Marie-Theres, Roach, Tracy M., Betat, Heike, Jackman, Jane E., Mörl, Mario 11 January 2024 (has links)
For flawless translation of mRNA sequence into protein, tRNAs must undergo a series
of essential maturation steps to be properly recognized and aminoacylated by aminoacyl-tRNA
synthetase, and subsequently utilized by the ribosome. While all tRNAs carry a 30
-terminal CCA
sequence that includes the site of aminoacylation, the additional 50
-G-1 position is a unique feature
of most histidine tRNA species, serving as an identity element for the corresponding synthetase.
In eukaryotes including yeast, both 30
-CCA and 50
-G-1 are added post-transcriptionally by tRNA
nucleotidyltransferase and tRNAHis guanylyltransferase, respectively. Hence, it is possible that
these two cytosolic enzymes compete for the same tRNA. Here, we investigate substrate preferences
associated with CCA and G-1-addition to yeast cytosolic tRNAHis, which might result in a temporal
order to these important processing events. We show that tRNA nucleotidyltransferase accepts
tRNAHis transcripts independent of the presence of G-1; however, tRNAHis guanylyltransferase
clearly prefers a substrate carrying a CCA terminus. Although many tRNA maturation steps can
occur in a rather random order, our data demonstrate a likely pathway where CCA-addition precedes
G-1 incorporation in S. cerevisiae. Evidently, the 30
-CCA triplet and a discriminator position A73 act
as positive elements for G-1 incorporation, ensuring the fidelity of G-1 addition.
|
140 |
El virus de l'hepatitis C i la ribonucleasa Phumana: aspectes biològics i terapèuticsNadal i Matamala, Anna 26 January 2004 (has links)
El virus de l'hepatitis C (VHC) provoca una hepatitis crònica que afecta a més de 170 milions de persones d'arreu del món. És un virus petit que es classifica dins de la família Flaviviridae i és un virus d'RNA de cadena positiva amb un genoma d'aproximadament 9.600 nucleòtids. A l'extrem 5' del genoma viral s'hi troba una regió no codificant (5'NCR) que comprèn els primers 341 nucleòtids i la seva funció està relaciona amb la traducció. Immediatament després hi ha una pauta de lectura oberta ORF que acaba en un únic codó d'aturada i codifica una poliproteïna de 3.010 aminoàcids. A continuació l'extrem 3' no codificant (3'NCR), que malgrat es desconeixen les seves funcions exactes, s'ha demostrat que és essencial per a la replicació vírica. La única poliproteïna generada és processada co- i postraduccionalment mitjançant proteases de l'hoste i víriques, donant lloc a les proteïnes estructurals (Core, E1 i E2-p7) i no estructurals (NS2-NS5B). Igual que la majoria de virus RNA, el VHC es caracteritza per tenir una taxa de mutació elevada. De fet, el genoma del virus no es pot definir com una única seqüència sinó per una població de variants molt relacionades entre sí. A aquesta manera d'organitzar la informació genètica se l'anomena quasiespècie viral i una de les seves implicacions principals és la facilitat amb què sorgeixen resistents al tractament. Els tractaments disponibles són llargs, cars, provoquen efectes secundaris considerables i només es resolen completament el 40% dels casos. Per aquesta raó es busquen altres solucions terapèutiques per combatre el virus entre les quals s'hi inclouen diferents estratègies. Una de les més innovadores i prometedores és la utilització de ribozims dirigits directament contra el genoma del virus. Aquest treball es centra en l'estudi de les noves estratègies terapèutiques basades en ribozims, concretament la ribonucleasa P. La ribonucleasa P és un ribozim que està present en tots els organismes ja que és l'enzim responsable de la maduració dels precursors d'RNA de transferència. El més interessant a nivell terapèutic és que s'ha demostrat que es pot dirigir la seva activitat cap a qualsevol RNA utilitzant una seqüència guia d'RNA que quan hibrida amb l'RNA diana, l'híbrid imita l'estructura secundària del substrat natural. En el cas del VHC, s'han estudiat ribozims dependents de seqüència (ribozims derivats d'RNAs satèl·lits i de viroides de plantes), sempre dirigits contra la regió més conservada del virus per evitar una disminució de l'eficiència del ribozim deguda a la variació de la diana. La ribonucleasa P és una endonucleasa d'activitat molt específica i es diferencia dels altres ribozims naturals en el sistema de reconeixement del substrat, reconeix elements estructurals i no de seqüència. L'objectiu final del treball és tallar in vitro l'RNA del VHC aprofitant la propietat que presenta aquest ribozim de reconèixer elements estructurals i no de seqüència ja que per a un mateix nombre de seqüències, el nombre d'estructures viables que pot adoptar l'RNA genòmic és molt més petit i per tant la variabilitat de la diana disminueix. S'han estudiat dos models d'RNasa P, la RNasa P humana guiada per seqüència guia externa (EGS) i l'RNA M1 de l'RNasa P d'E.coli unit a la seqüència guia per l'extrem 3' (ribozim M1GS). Abans però de dirigir el ribozim, s'han estudiat l'estructura i la variabilitat d'una regió del genoma del virus ja que s'ha descrit que són factors que poden limitar l'eficiència de qualsevol ribozim. Derivat d'aquests estudis s'aporten dades sobre accessibilitat i variabilitat d'una regió interna del genoma del virus de l'hepatitis C, la zona d'unió de la regió E2/NS2 (regió 2658-2869). L'estudi d'accessibilitat revela que la regió 2658-2869 del genoma del virus conté dominis oberts i tancats i que la transició entre uns i altres no és brusca si es compara amb altres regions d'estructura coneguda (regió 5' no codificant). Els resultats dels assajos in vitro amb els dos models de RNasa P mostren que s'ha aconseguit dirigir tant la ribonucleasa P humana com el ribozim M1GS cap a una zona, predeterminada segons l'estudi d'accessibilitat, com a poc estructurada i tallar l'RNA del virus. De l'anàlisi de mutacions, però, es dedueix que la regió estudiada és variable. Tot i dirigir el ribozim cap a la zona més accessible, la variació de la diana podria afectar la interacció amb la seqüència guia i per tant disminuir l'eficiència de tall. Si es proposés una estratègia terapèutica consistiria en un atac simultani de vàries dianes.D'altra banda i derivat d'un resultat inesperat on s'ha observat en els experiments control que l'extracte de RNasa P humana tallava l'RNA viral en absència de seqüències guia externes, s'ha caracteritzat una nova interacció entre l'RNA del VHC i la RNasa P humana. Per a la identificació de l'enzim responsable dels talls s'han aplicat diferents tècniques que es poden dividir en mètodes directes (RNA fingerprinting) i indirectes (immunoprecipitació i inhibicions competitives). Els resultats demostren que la ribonucleasa P humana, i no un altre enzim contaminant de l'extracte purificat, és la responsable dels dos talls específics observats i que es localitzen, un a l'entrada interna al ribosoma (IRES) i molt a prop del codó AUG d'inici de la traducció i l'altre entre la regió codificant estructural i no estructural. La ribonucleasa P és un dels enzims del metabolisme del tRNA que s'utilitza per identificar estructures similars al tRNA en substrats diferents del substrat natural. Així doncs, el fet que la ribonucleasa P reconegui i talli el genoma del VHC en dues posicions determinades suggereix que, a les zones de tall, el virus conté estructures semblants al substrat natural, és a dir estructures tipus tRNA. A més, tot i que el VHC és molt variable, els resultats indiquen que aquestes estructures poden ser importants per el virus, ja que es mantenen en totes les variants naturals analitzades. Creiem que la seva presència podria permetre al genoma interaccionar amb factors cel·lulars que intervenen en la biologia del tRNA,particularment en el cas de l'estructura tipus tRNA que es localitza a l'element IRES. Independentment però de la seva funció, es converteixen en unes noves dianes terapèutiques per a la RNasa P. S'ha de replantejar però l'estratègia inicial ja que la similitud amb el tRNA les fa susceptibles a l'atac de la ribonucleasa P, directament, en absència de seqüències guia externes. / Hepatitis C virus is a human pathogen causing chronic liver disease in 170 million people worldwide. The virus is classified within the family Flaviviridae. The RNA genome is single-stranded and functions as the sole mRNA species for translation. It comprises a 5'-untranslated region, which functions as an internal ribosome entry site, and a long open reading frame, which encodes a polyprotein precursor of about 3010 amino acids, that is cleaved into structural (core, envelope 1, envelope 2 and p7) and non-structural (NS-2, NS-3, NS-4 and NS-5) proteins; followed by a 3' non-coding region. Analyzing significant numbers of cDNA clones of hepatitis C virus (HCV) from single isolates provides unquestionable proof that the viral genome cannot be defined by a single sequence, but rather by a population of variant sequences closely related to one another. In the infected patient, a master (the most frequently represented sequence) and a spectrum of mutant sequences may be isolated at any given time during chronic infection. This manner of organizing genetic information, which characterizes most RNA viruses, is referred to as quasispecies. HCV resistance to treatment (either alone or in combination with ribavirin) is one of the most important clinical implications predicted by the quasispecies model suggesting the necessity to seek new therapies. HCV therapeutic strategies based on ribozyme cleavage are leading candidates. The ribozyme activity of Ribonuclease P (RNase P) is among proposed antiviral agents. RNase P is a ubiquitous cellular endonuclease and one of the most abundant and efficient enzymes in the cell. This enzyme is a ribonucleoprotein complex that catalyzes a hydrolysis reaction to remove the leader sequence of precursor tRNA to generate the mature tRNA. Substrate recognition by the RNase P ribozyme does not rely on sequence requirements but on structural features of the RNA substrate. Custom-designed ribo-oligonucleotides, which hybridize with the target, called external guide sequences (EGSs), may provide the RNA structure which RNase P recognizes and cleaves in the hybridized complex. Recognition of structures instead of sequences may represent a great advantage in the fight against variable viruses because single or even double mutations in the target may be tolerated for RNase P recognition. One of the major aims of this work is to cleave HCV RNA using the RNase P ribozyme guided by EGS. To expand investigation of targeting in the HCV genome we assessed accessibility and low potential of variation of the target RNA since it is described that are crucial requirements for ribozyme therapy against viral infections. In the hepatitis C virus, the sequence of the 5' non coding region is conserved but the highly folded RNA structure severely limits the number of accessible sites. We have considered an internal genomic region whose sequence variation has been widely investigated. We have first mapped the accessibility of the genomic RNA to complementary DNAs within an internal genomic region. We performed a kinetic and thermodynamic study. Accordingly, we have designed and assayed four RNase P ribozymes targeted to the selected sites. Considerations on RNA structural accessibility and sequence variation indicate that several target sites should be defined for simultaneous attack. While performing targeting experiments on HCV RNA transcripts with RNase P we have found that, surprisingly, purified RNase P (peak activity) from HeLa cells cleaved HCV genomic RNA efficiently at two sites in the absence of EGSs. We report the techniques used to prove that the cleavage is specific to human RNase P (indirect methods: immunoprecipitation and competitive inhibition), and to show where cleavage occurs (direct method: RNA fingerprinting). We have confirmed that human RNase P is responsible for HCV RNA processing and that the two cleavages sites are in the IRES HCV domain, close to AUG initiator triplet, and in the E2/NS2 junction fragment (between structural and non structural coding region). To define cleavage by RNase P as a general property of HCV, viral sequences obtained from different patients were compared for RNase P cleavage accessibility. Cleavage was consistently observed in all sequences tested although with different efficiencies. Since RNase P recognizes and cleaves tRNA-like structures, we believe that such recognition by RNase P is an indication for the presence of two possible tRNA-like structures in the HCV genome. Comparison of such results at the two HCV RNase P cleavage sites should help us to understand in greater detail HCV substrate structure, tRNA mimicry, rules underlying recognition by human RNase P, and, in the particular case of the IRES motif, possible participation in translation. Whatever the role of such tRNA-like structures, such a strong tendency to maintain them might be important in the development of therapeutic strategies against the virus because they can represent highly susceptible targets for RNase P.
|
Page generated in 0.0338 seconds