Spelling suggestions: "subject:"temps dde relaxation T1"" "subject:"temps dee relaxation T1""
1 |
Mise en place d'une mesure quantitative du T1 en IRM cardiaque / Development and setting of T1 quantitative measure in cardiac MRIPoinsignon-Clique, Hélène 13 November 2012 (has links)
La cartographie du temps de relaxation longitudinale T1 est une technique d'IRM quantitative pour caractériser les tissus myocardiques. Plusieurs études ont déjà montré la corrélation entre la mesure de T1 et la présence de fibrose. Celle-ci est souvent observée dans les pathologies cardiaques telles que les cardiomyopathies ou l'infarctus du myocarde. Cependant, l'acquisition d'une carte T1 du coeur reste techniquement difficile. Actuellement, la quantification T1 du myocarde humain est réalisée en apnée à l'aide de séquences 2D qui sont spécifiques aux constructeurs et donc peu disponibles. Afin de pallier aux limitations de ces séquences, nous proposons une méthode basée sur une séquence 3D clinique. Cette technique, utilisant la variation des angles de bascule avec intégration d'une correction B1, a été adaptée pour une utilisation en imagerie cardiaque. Des essais sur fantôme ont permis de sélectionner les paramètres optimaux et de montrer la reproductibilité de la méthode. Puis, une étude sur volontaires sains a permis de valider la méthode en double synchronisation (cardiaque et respiratoire). Enfin, une méthode de reconstruction intégrant des signaux physiologiques de mouvement a également été utilisée afin de faire de la quantification T1 en respiration libre et de diminuer le temps d'acquisition. Les valeurs de T1 myocardique sur volontaires sont comprises entre 1289 ± 66 ms et 1376 ± 43 ms, correspondant aux valeurs de la littérature. Ces travaux ouvrent la voie à l'utilisation de la cartographie T1 chez les patients avec pour objectifs une meilleure caractérisation des pathologies et une meilleure adaptation des stratégies thérapeutiques / T1 mapping is a useful quantitative MR technique for cardiac tissue characterization. Several studies have shown that T1 measurements are correlated with fibrosis, which is observed in cardiac diseases such as cardiomyopathy or myocardial infarction. However, cardiac T1 mapping remains challenging, mainly because of long acquisition times and interference from cardiac and respiratory motions. T1 quantification on the human myocardium is generally performed on breath-hold with 2D specific sequences. Unfortunately these sequences are scanner specific and poorly available for clinical use. To overcome these limitations, we propose a new method based on a 3D clinical sequence. This technique, using a variable flip angle approach that integrates B1 correction, was adapted in cardiac imaging. Phantom tests were used to select the optimal parameters and to show the method reproducibility. Then, the method was validated with a volunteer study using double synchronization (cardiac and respiratory). Moreover, a reconstruction method integrating physiological signals of motion was also used to perform T1 quantification in free breathing and to reduce the total acquisition time. The myocardial T1 values on volunteers ranged between 1289 ± 66 ms and 1376 ± 43 ms, which was in good agreement with previously published works. These studies allow the use of T1 mapping in patients with better characterization of pathologies and a better adaptation to therapeutic strategies
|
2 |
Caractérisation et optimisation d’une méthode de mesure du T1 en IRM cardiaque / Characterization and optimisation of quantitative method for T1 measurements in cardiac MRIFerry, Pauline 16 December 2015 (has links)
L’imagerie par résonance magnétique (IRM) est un outil de choix pour la caractérisation tissulaire in vivo. Il est démontré que la mesure d’un temps caractéristique en IRM, appelé « T1 », est corrélée à la composition du tissu. Justesse et reproductibilité sont requises dans la mesure du T1 pour : i) discriminer les valeurs de T1 des tissus sains et fibrosés dont la gamme de valeurs est assez restreinte, ii) permettre la mesure avant et après injection d’agent de contraste et iii) comparer les valeurs de T1 entre sites et constructeurs. A ce jour, aucune des techniques publiées n’est en mesure de fournir une mesure de T1 « idéale ». L’objectif principal de cette thèse est d’optimiser et de valider une technique de mesure du T1 sur le myocarde, qui se propose d’allier ces deux qualités. Pour atteindre cet objectif, nous avons travaillé la séquence appelée « SMART1Map » basée sur le principe d’échantillonnage d’une courbe de saturation-récupération. Des essais sur objets tests et sur volontaires à 1,5T et 3T ont d’abord été réalisés. Bien que les valeurs moyennes de T1 mesurées chez 7 sujets étaient justes et correspondaient à la littérature (1150 ± 84 ms à 1,5T), les résultats ont montré une faible reproductibilité imputable en partie à un manque de robustesse de la séquence vis-à-vis des inhomogénéités de champ magnétique particulièrement importantes à 3T. L’optimisation (simulation, implémentation et tests) de l’impulsion radiofréquence de saturation constitutive de la séquence a été mise en œuvre à 3T, sur objets fantômes, puis sur volontaires sains. Ces travaux ouvrent la voie à la mise en place de mesure de biomarqueur IRM de la fibrose / Cardiac Magnetic Resonance Imaging (MRI) has experienced growing interest due to its great potential in myocardial tissue characterization. Myocardium T1 values can be considered a useful imaging biomarker. Although many different T1 mapping techniques already exist, accurate and precise myocardial T1 quantification remains a desired yet challenging goal. Cardiac T1 mapping necessitates high precision to: i) discriminate values within the relatively short range of T1 values in healthy and diseased tissues, ii) allow both pre and post contrast agent injection T1 assessment, which is mandatory to compute the ECV and iii) allow comparison across platforms and hospitals. It should also provide a T1 value independent of heart rate. Among published methods, not any of them offer an “ideal” T1 quantification method. The main aim of this work is to optimize and to validate a precise and accurate quantitative T1 mapping technique. In order to achieve this goal, the sequence called « SMART1Map » based on the saturation recovery curve sampling was used. The first step consisted in performing T1 measurements on phantoms and healthy volunteers at 1,5T and 3T. Although this study allowed to assess accurate myocardium T1 values close to literature ones (1150 ± 84 ms), the sequence showed a poor precision likely due to a lack of robustness to magnetic field inhomogeneties and frequency offsets. Optimization (including simulation, implementation and tests) of the saturation RF pulse used in the sequence was carried out in phantoms then on healthy subjects at 3T. From this development, fibrosis detection through T1 measurements in clinical studies can now be started at 1.5T and 3T
|
Page generated in 0.0944 seconds