• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

As origens da teoria dos invariantes na Inglaterra e o Mécanique Analytique de Lagrange (1788) /

Santos, Nilson Diego de Alcantara. January 2014 (has links)
Orientador: Adriana Cesar de Mattos / Banca: Marcus Vinicius Maltempi / Banca: Oscar João Abdounur / Resumo: As origens da Teoria dos Invariantes na Inglaterra e o Mécanique Analytique de Lagrange (1788), é um trabalho voltado principalmente a entender uma possível influência que levou George Boole em 1841, a escrever o artigo Exposition of a General Theory of Linear Transformations e verificar se a motivação que o fez produzir este trabalho é igual ou diferente da motivação que ele exerceu sobre Arthur Cayley e consequentemente sobre James Joseph Sylvester. O presente trabalho apresenta um estudo das origens da Teoria dos Invariantes, no século XIX na Inglaterra. De acordo com os historiadores da Matemática o marco do início desta Teoria foi a publicação de George Boole em 1841. Assumimos este artigo como referência principal para realizar nossa pesquisa. Analisamos "antes" e "após" esta publicação de 1841. Concluímos que o Mécanique Analytique de Lagrange, foi a principal motivação para George Boole escrever seu trabalho e, certamente, George Boole foi uma grande influência para Arthur Cayley no que condiz com a escolha do assunto "invariantes" bem como o desenvolvimento desta Teoria por Cayley / Abstract: The origins of the theory of invariants in England and Mécanique Analytique of Lagrange (1788), is a work geared primarily to understand a possible influence that led George Boole in 1841, writing the article Exposition of the General Theory of Linear Transformations and verify that the motivation that did produce this work is equal or different of the motivation that he exerted on Arthur Cayley and James Joseph Sylvester consequently. This paper presents a study of the Invariant Theory origins, in the nineteenth century in England. According to historians of Mathematics the beginning of this Theory was the publication in 1841 of George Boole. We have taken this article as a reference to our research. We have proposed to analyzed "before" and "after" this publication, 1841. We conclude that the Mécanique Analytique Lagrange, was the essential motivation for George Boole write his work, and certainly George Boole was a great influence to Arthur Cayley in which matches the choice of subject "invariants" as well as the development of this Theory by Cayley / Mestre
2

Problema de Noether não-comutativo / Noncommutative Noether´s problem

Schwarz, Joao Fernando 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
3

Métodos algébricos para a obtenção de formas gerais reversíveis-equivariantes / Algebraic methods for the computation of general reversible-equivariant mappings

Oliveira, Iris de 10 March 2009 (has links)
Na análise global e local de sistemas dinâmicos assumimos, em geral, que as equações estão numa forma normal. Em presença de simetrias, as equações e o domínio do problema são invariantes pelo grupo formado por estas simetrias; neste caso, o campo de vetores é equivariante pela ação deste grupo. Quando, além das simetrias, temos também ocorrência de anti-simetrias - ou reversibilidades - as equações e o domínio do problema são ainda invariantes pelo grupo formado pelo conjunto de todas as simetrias e anti-simetrias; neste caso, o campo de vetores é reversível-equivariante. Existem muitos modelos físicos onde simetrias e anti-simetrias aparecem naturalmente e cujo efeito pode ser estudado de uma forma sistemática através de teoria de representação de grupos de Lie. O primeiro passo deste processo é colocar a aplicação que modela tal sistema numa forma normal e isto é feito com a dedução a priori da forma geral dos campos de vetores. Esta forma geral depende de dois componentes: da base de Hilbert do anel das funções invariantes e dos geradores do módulo das aplicações reversíveis-equivariantes. Neste projeto, nos concentramos principalmente na aplicação de resultados recentes da literatura para a construção de uma lista de formas gerais de aplicações reversíveisequivariantes sob a ação de diferentes grupos. Além disso, adaptamos ferramentas algébricas da literatura existentes no contexto equivariante para o estudo sistemático de acoplamento de células idênticas no contexto reversível-equivariante / In the global and local analysis of dynamical systems, we assume, in general, that the equations are in a normal form. In presence of symmetries, the equations and the problem domain are invariant under the group formed by these symmetries; in that case, the vector field is equivariant by the action of this group. When, in addition to the symmetries, we have the occurrence of anti-symmetries - or reversibility - the equations and the problem domain are still invariant by the group formed by the set of all symmetries and anti-symmetries; in this case, the vector field is reversible-equivariant. There are many physical models where both symmetries and anti-symmetries occur naturally and whose effect can be studied in a systematic way through group representation theory. The first step of this process is to put the mapping that model the system in a normal form, and this is done with the deduction of the general form of the vector field. This general form depends on two components: the Hilbert basis of the invariant function ring and also the generators of the module of the revesible-equivariants. In this work, we mainly focus on the applications of recent results of the literature to build a list of general forms of reversible-equivariant mappings under the action of different groups. We also adapt algebraic tools of the existing literature in the equivariant context to the systematic study of coupling of identical cells in the reversible-equivariant context
4

Invariantes de anéis de operadores diferenciais: racionalidade de Gellfand-Kirillov, categorias de módulos, aplicações / Invariants of rings of differential operators: Gelfand-Kirillov rationality, categories of modules, aplications

Schwarz, João Fernando 13 November 2018 (has links)
Esta tese aborda, como a despeito da rigidez da álgebra de Weyl An(k), suas subálgebras de invariantes possuem uma rica teoria de invariantes: do ponto de vista de estrutura, se fizermos um estudo de equivalência birracional dentro da filosofia de Gelfand-Kirillov, temos o Problema de Noether Não-Comutativo, sobre o qual obtemos vários novos resultados (Capítulo 4). Do ponto de vista de representações, obtemos que suas subálgebras de invariantes, em vários casos, herdam de maneira natural a estrutura de módulos de Gelfand-Tsetlin da álgebra de Weyl (Capítulo 5), assim como uma noção natural de módulos holonômicos (Capítulo 6). Analisaremos resultados similares para outras álgebras semelhantes a Álgebra de Weyl, como anéis de operadores diferenciais no toro e álgebras de Weyl generalizadas (Capítulos 2, 4 e 5). Como aplicações, temos uma Conjectura de Gelfand-Kirillov para subálgebras esféricas de Cherednik (Capítulo 4); para a Conjectura de Gelfand-Kirillov para várias álgebras de Galois (Capítulos 5 e 7); e o problema de realizar U(L), em que L é uma algebra de Lie simples de tipo B,C,D, como uma ordem de Galois generalizando o caso de gln (Capítulo 5). Um Capítulo sobre o Problema de Noether Quântico e um resumo do artigo de Futorny e Schwarz, \"Quantum Linear Galois Algebras\", encerram a tese. / This thesis discussess how, given the rigidity results on the Weyl Algebra An(k), its invariant subrings can nonetheless have an interesting invariant theory: from the structural point of view, a birrational equivalence study under the Gelfand-Kirillov philosophy gives us the Noncommutative Noether Problem, of which we obtain many new results (Chapter 4). From the point of view of representations, we obtain that their invariant rings, in many cases, have a natural theory of Gelfand-Tsetlin modules just like the Weyl Algebra (Chapter 5), and a natural notion of holonomic modules (Chapter 6). We discuss analogues results for algebras which are similar to the Weyl Algebra, such as the ring of differential operators on the torus and the generalized Weyl algebras (Chapters 2,4,5). As applications, we have a Gelfand-Kirillov Conjecture for spherical subalgebras of Cherednik (Chapter 4); for the Gelfand-Kirillov Conjecture of many Galois algebras (Chapter 5 and 7); and the problem to give a Galois structure to the algebra U(L), where L is a simple Lie algebra of type B,C,D -generalizing the case A (Chapter 5). A chapter about the Quantum Noether Problem and a resume of the article Quantum Linear Galois Algebras\" ends the thesis.
5

Singularidades e teoria de invariantes em bifurcação reversível-equivariante / Singularities and invariant theory in reversible-equivariant bifurcation

Baptistelli, Patricia Hernandes 17 July 2007 (has links)
A proposta deste trabalho é apresentar resultados para o estudo sistemático de sistemas dinâmicos reversíveis-equivariantes, ou seja, em presença simultânea de simetrias e antisimetrias. Este é o caso em que o domínio e as equações que regem o sistema são invariantes pela ação de um grupo de Lie compacto Γ formado pelas simetrias e anti-simetrias do problema. Apresentamos métodos de teoria de Singularidades e teoria de invariantes para classificar bifurcações a um parâmetro de pontos de equilíbrio destes sistemas. Para isso, separamos o estudo de aplicações Γ-reversíveis-equivariantes em dois casos: auto-dual e não auto-dual. No primeiro caso, a existência de um isomorfismo linear Γ-reversível-equivariante estabelece uma correspondência entre a classificação de problemas Γ-reversíveis-equivariantes e a classificação de problemas Γ-equivariantes associados, para os quais todos os elementos de Γ agem como simetria. Os resultados obtidos para o caso não auto-dual se baseiam em teoria de invariantes e envolvem técnicas algébricas que reduzem a análise ao caso polinomial invariante. Dois algoritmos simbólicos são estabelecidos para o cálculo de geradores para o módulo das funções anti-invariantes e para o módulo das aplicações reversíveis-equivariantes. / The purpose of this work is to present results for the sistematic study of reversible-equivariant dynamical systems, namely in simultaneous presence of symmetries and reversing simmetries. This is the case when the domain and the equations modeling the system are invariant under the action of a compact Lie group Γ formed by the symmetries and reversing symmetries of the problem. We present methods in Singularities and Invariant theory to classify oneparameter steady-state bifurcations of these systems. For that, we split the study of the ¡¡reversible-equivariant mapping into two cases: self-dual and non self-dual. In the first case, the existence of a Γ-reversible-equivariant linear isomorphism establishes a one-toone correspondence between the classification of Γ-reversible-equivariant problems and the classification of the associated Γ-equivariant problems, for which all elements in Γ act as symmetries. The results obtained for the non self-dual case are based on Invariant theory and involve algebraic techniques that reduce the analysis to the invariant polynomial case. Two symbolic algorithms are established for the computation of generators for the module of anti-invariant functions and for the module of reversible-equivariant mappings.
6

Métodos algébricos para a obtenção de formas gerais reversíveis-equivariantes / Algebraic methods for the computation of general reversible-equivariant mappings

Iris de Oliveira 10 March 2009 (has links)
Na análise global e local de sistemas dinâmicos assumimos, em geral, que as equações estão numa forma normal. Em presença de simetrias, as equações e o domínio do problema são invariantes pelo grupo formado por estas simetrias; neste caso, o campo de vetores é equivariante pela ação deste grupo. Quando, além das simetrias, temos também ocorrência de anti-simetrias - ou reversibilidades - as equações e o domínio do problema são ainda invariantes pelo grupo formado pelo conjunto de todas as simetrias e anti-simetrias; neste caso, o campo de vetores é reversível-equivariante. Existem muitos modelos físicos onde simetrias e anti-simetrias aparecem naturalmente e cujo efeito pode ser estudado de uma forma sistemática através de teoria de representação de grupos de Lie. O primeiro passo deste processo é colocar a aplicação que modela tal sistema numa forma normal e isto é feito com a dedução a priori da forma geral dos campos de vetores. Esta forma geral depende de dois componentes: da base de Hilbert do anel das funções invariantes e dos geradores do módulo das aplicações reversíveis-equivariantes. Neste projeto, nos concentramos principalmente na aplicação de resultados recentes da literatura para a construção de uma lista de formas gerais de aplicações reversíveisequivariantes sob a ação de diferentes grupos. Além disso, adaptamos ferramentas algébricas da literatura existentes no contexto equivariante para o estudo sistemático de acoplamento de células idênticas no contexto reversível-equivariante / In the global and local analysis of dynamical systems, we assume, in general, that the equations are in a normal form. In presence of symmetries, the equations and the problem domain are invariant under the group formed by these symmetries; in that case, the vector field is equivariant by the action of this group. When, in addition to the symmetries, we have the occurrence of anti-symmetries - or reversibility - the equations and the problem domain are still invariant by the group formed by the set of all symmetries and anti-symmetries; in this case, the vector field is reversible-equivariant. There are many physical models where both symmetries and anti-symmetries occur naturally and whose effect can be studied in a systematic way through group representation theory. The first step of this process is to put the mapping that model the system in a normal form, and this is done with the deduction of the general form of the vector field. This general form depends on two components: the Hilbert basis of the invariant function ring and also the generators of the module of the revesible-equivariants. In this work, we mainly focus on the applications of recent results of the literature to build a list of general forms of reversible-equivariant mappings under the action of different groups. We also adapt algebraic tools of the existing literature in the equivariant context to the systematic study of coupling of identical cells in the reversible-equivariant context
7

Invariantes de anéis de operadores diferenciais: racionalidade de Gellfand-Kirillov, categorias de módulos, aplicações / Invariants of rings of differential operators: Gelfand-Kirillov rationality, categories of modules, aplications

João Fernando Schwarz 13 November 2018 (has links)
Esta tese aborda, como a despeito da rigidez da álgebra de Weyl An(k), suas subálgebras de invariantes possuem uma rica teoria de invariantes: do ponto de vista de estrutura, se fizermos um estudo de equivalência birracional dentro da filosofia de Gelfand-Kirillov, temos o Problema de Noether Não-Comutativo, sobre o qual obtemos vários novos resultados (Capítulo 4). Do ponto de vista de representações, obtemos que suas subálgebras de invariantes, em vários casos, herdam de maneira natural a estrutura de módulos de Gelfand-Tsetlin da álgebra de Weyl (Capítulo 5), assim como uma noção natural de módulos holonômicos (Capítulo 6). Analisaremos resultados similares para outras álgebras semelhantes a Álgebra de Weyl, como anéis de operadores diferenciais no toro e álgebras de Weyl generalizadas (Capítulos 2, 4 e 5). Como aplicações, temos uma Conjectura de Gelfand-Kirillov para subálgebras esféricas de Cherednik (Capítulo 4); para a Conjectura de Gelfand-Kirillov para várias álgebras de Galois (Capítulos 5 e 7); e o problema de realizar U(L), em que L é uma algebra de Lie simples de tipo B,C,D, como uma ordem de Galois generalizando o caso de gln (Capítulo 5). Um Capítulo sobre o Problema de Noether Quântico e um resumo do artigo de Futorny e Schwarz, \"Quantum Linear Galois Algebras\", encerram a tese. / This thesis discussess how, given the rigidity results on the Weyl Algebra An(k), its invariant subrings can nonetheless have an interesting invariant theory: from the structural point of view, a birrational equivalence study under the Gelfand-Kirillov philosophy gives us the Noncommutative Noether Problem, of which we obtain many new results (Chapter 4). From the point of view of representations, we obtain that their invariant rings, in many cases, have a natural theory of Gelfand-Tsetlin modules just like the Weyl Algebra (Chapter 5), and a natural notion of holonomic modules (Chapter 6). We discuss analogues results for algebras which are similar to the Weyl Algebra, such as the ring of differential operators on the torus and the generalized Weyl algebras (Chapters 2,4,5). As applications, we have a Gelfand-Kirillov Conjecture for spherical subalgebras of Cherednik (Chapter 4); for the Gelfand-Kirillov Conjecture of many Galois algebras (Chapter 5 and 7); and the problem to give a Galois structure to the algebra U(L), where L is a simple Lie algebra of type B,C,D -generalizing the case A (Chapter 5). A chapter about the Quantum Noether Problem and a resume of the article Quantum Linear Galois Algebras\" ends the thesis.
8

Problema de Noether não-comutativo / Noncommutative Noether´s problem

Joao Fernando Schwarz 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
9

Singularidades e teoria de invariantes em bifurcação reversível-equivariante / Singularities and invariant theory in reversible-equivariant bifurcation

Patricia Hernandes Baptistelli 17 July 2007 (has links)
A proposta deste trabalho é apresentar resultados para o estudo sistemático de sistemas dinâmicos reversíveis-equivariantes, ou seja, em presença simultânea de simetrias e antisimetrias. Este é o caso em que o domínio e as equações que regem o sistema são invariantes pela ação de um grupo de Lie compacto Γ formado pelas simetrias e anti-simetrias do problema. Apresentamos métodos de teoria de Singularidades e teoria de invariantes para classificar bifurcações a um parâmetro de pontos de equilíbrio destes sistemas. Para isso, separamos o estudo de aplicações Γ-reversíveis-equivariantes em dois casos: auto-dual e não auto-dual. No primeiro caso, a existência de um isomorfismo linear Γ-reversível-equivariante estabelece uma correspondência entre a classificação de problemas Γ-reversíveis-equivariantes e a classificação de problemas Γ-equivariantes associados, para os quais todos os elementos de Γ agem como simetria. Os resultados obtidos para o caso não auto-dual se baseiam em teoria de invariantes e envolvem técnicas algébricas que reduzem a análise ao caso polinomial invariante. Dois algoritmos simbólicos são estabelecidos para o cálculo de geradores para o módulo das funções anti-invariantes e para o módulo das aplicações reversíveis-equivariantes. / The purpose of this work is to present results for the sistematic study of reversible-equivariant dynamical systems, namely in simultaneous presence of symmetries and reversing simmetries. This is the case when the domain and the equations modeling the system are invariant under the action of a compact Lie group Γ formed by the symmetries and reversing symmetries of the problem. We present methods in Singularities and Invariant theory to classify oneparameter steady-state bifurcations of these systems. For that, we split the study of the ¡¡reversible-equivariant mapping into two cases: self-dual and non self-dual. In the first case, the existence of a Γ-reversible-equivariant linear isomorphism establishes a one-toone correspondence between the classification of Γ-reversible-equivariant problems and the classification of the associated Γ-equivariant problems, for which all elements in Γ act as symmetries. The results obtained for the non self-dual case are based on Invariant theory and involve algebraic techniques that reduce the analysis to the invariant polynomial case. Two symbolic algorithms are established for the computation of generators for the module of anti-invariant functions and for the module of reversible-equivariant mappings.
10

As origens da teoria dos invariantes na Inglaterra e o Mécanique Analytique de Lagrange (1788)

Santos, Nilson Diego de Alcantara [UNESP] 25 February 2014 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:52Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-02-25Bitstream added on 2014-06-13T19:52:43Z : No. of bitstreams: 1 000755405.pdf: 721229 bytes, checksum: a665c9ee190d3a2675b924dd4bb2c525 (MD5) / As origens da Teoria dos Invariantes na Inglaterra e o Mécanique Analytique de Lagrange (1788), é um trabalho voltado principalmente a entender uma possível influência que levou George Boole em 1841, a escrever o artigo Exposition of a General Theory of Linear Transformations e verificar se a motivação que o fez produzir este trabalho é igual ou diferente da motivação que ele exerceu sobre Arthur Cayley e consequentemente sobre James Joseph Sylvester. O presente trabalho apresenta um estudo das origens da Teoria dos Invariantes, no século XIX na Inglaterra. De acordo com os historiadores da Matemática o marco do início desta Teoria foi a publicação de George Boole em 1841. Assumimos este artigo como referência principal para realizar nossa pesquisa. Analisamos “antes” e “após” esta publicação de 1841. Concluímos que o Mécanique Analytique de Lagrange, foi a principal motivação para George Boole escrever seu trabalho e, certamente, George Boole foi uma grande influência para Arthur Cayley no que condiz com a escolha do assunto “invariantes” bem como o desenvolvimento desta Teoria por Cayley / The origins of the theory of invariants in England and Mécanique Analytique of Lagrange (1788), is a work geared primarily to understand a possible influence that led George Boole in 1841, writing the article Exposition of the General Theory of Linear Transformations and verify that the motivation that did produce this work is equal or different of the motivation that he exerted on Arthur Cayley and James Joseph Sylvester consequently. This paper presents a study of the Invariant Theory origins, in the nineteenth century in England. According to historians of Mathematics the beginning of this Theory was the publication in 1841 of George Boole. We have taken this article as a reference to our research. We have proposed to analyzed before and after this publication, 1841. We conclude that the Mécanique Analytique Lagrange, was the essential motivation for George Boole write his work, and certainly George Boole was a great influence to Arthur Cayley in which matches the choice of subject invariants as well as the development of this Theory by Cayley

Page generated in 0.1137 seconds