• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Séquestration du CO₂ associée aux phénomènes de minéralisation passive du carbone dans les résidus miniers du Projet Dumont Nickel (Abitibi-Témiscamingue, Québec, Canada)

Gras, Antoine 03 July 2018 (has links)
L'implication des émissions de dioxyde de carbone (CO2) anthropiques dans les changements climatiques est aujourd'hui admise et des solutions émergent pour lutter contre l'accumulation de CO2. La minéralisation du carbone, qui permet de séquestrer le CO2 sous forme de carbonates, stables à l'échelle géologique, est une des options envisagées. Parmi les voies de minéralisation du carbone envisagées, la minéralisation passive des résidus miniers ultramafiques permettrait de compenser les émissions en CO2 d'une exploitation minière. Toutefois, les impacts sur la qualité des eaux de lixiviation et l'évolution de la capacité de séquestration en conditions naturelles, à moyenne et grande échelle, sont peu documentés. La compagnie RNC Minerals a pour objectif d'exploiter un gisement de nickel situé dans le Nord-Ouest de la province du Québec. L'exploitation du Projet Dumont Nickel (PDN) aboutirait à la production d'environ 1,7 Gt de résidus miniers ultramafiques. Les différents facteurs qui influencent la capacité de séquestration des résidus du PDN ont été étudiés en laboratoire, à des teneurs en CO2 variables. Dans cette étude, les processus de la minéralisation passive dans les résidus du PDN, sont décrits et la capacité de séquestration en CO2 atmosphérique est estimée à moyenne échelle, en conditions naturelles. Pour étudier les impacts de l'altération météorique des résidus miniers du PDN, deux cellules expérimentales ont été construites et instrumentées. La première EC-1, contient les résidus ultramafiques, qualifiés de stériles (Waste-rock) et la seconde EC-2 a été remplie avec les résidus d'usinage (Tailings). Les propriétés hydrogéologiques et la surface spécifique des résidus des deux cellules sont différentes alors que la minéralogie est similaire. Les résidus sont composés principalement d'antigorite, de lizardite, de chrysotile, de brucite, de magnetite et de chlorite. Entre 2011 et 2015, l'évolution de la concentration en CO2, de la minéralogie, et de la composition chimique des lixiviats ont été enregistrées. Le suivi des concentrations en CO2 permet d'observer une diminution de la concentration en CO2 de la surface (~390 ppmv) vers le fond des parcelles (~100 ppmv). Dans le même temps, la teneur en carbone dans les résidus altérés a augmenté et les analyses minéralogiques révèlent la présence de plusieurs carbonates de magnésium comme l'hydromagnésite. Ces données suggèrent que les résidus séquestrent du CO2 passivement. Dans les cellules expérimentales le CO2 peut provenir de 3 sources : (1) l'atmosphère, (2) la dégradation de la matière organique, et (3) la dissolution des carbonates. Les compositions isotopiques du CO2(g), et des carbonates néoformés ont été mesurées. Ces analyses ont permis de mettre en évidence que la dissolution du CO2(g) dans l'eau interstitielle limite la capacité de séquestration et que le CO2 atmosphérique est la source du CO2 séquestré. Malgré les différences entre les deux cellules expérimentales les même processus contrôlent la séquestration du CO2. Un modèle conceptuel de la réaction de minéralisation du carbone, comprenant l'évolution de la composition isotopique, est proposé. Les lixiviats, récoltés aux bas des cellules expérimentales entre mai et novembre depuis 2011 sont caractérisés par un pH alcalin (~9,5), une alcalinité élevée (~90 à ~750 mg/L) et une forte concentration en magnésium (~50 à ~750 mg/L). Cette composition est en accord avec l'altération des résidus ultramafiques en milieu ouvert au CO2. Depuis 2012, la composition chimique des lixiviats évolue en fonction des saisons. Ces variations saisonnières sont expliquées par : (1) les variations climatiques au cours d'une année et (2) l'augmentation de la précipitation de carbonate entre mai et juillet. La diminution saisonnière de l'alcalinité et de la concentration en magnésium, provoqué par l'augmentation de la précipitation de carbonates, induit une sous-saturation des minéraux carbonatés ce qui limite la capacité de séquestration en CO2. Un taux de séquestration en CO2 atmosphérique de 1,4 (+/- 0.3) kg CO2/tonne/an a été mesuré dans les résidus de concentrateur (EC-2). À l'échelle de l'exploitation minière, les résidus de concentrateur permettraient la séquestration de 21 kt de CO2 atmosphérique par an ce qui correspond à un quart des émissions annuelles de la future mine. Le modèle MIN3P, qui permet de simuler le transport réactif multi composants et multiphasiques dans un milieu poreux insaturé, a été utilisé pour simuler en 1D la réaction de minéralisation au centre de la cellule EC-2. L'ensemble des données récoltées a été utilisé pour calibrer le modèle. Toutefois, aucune des simulations n’a permis de reproduire l'évolution de la géochimie des lixiviats et la concentration en CO2 observés. Plusieurs simplifications du modèle conceptuel pourraient expliquer les différences avec les données observées. / The implication of anthropogenic carbon dioxide (CO2) emissions in climate change is now widely accepted and solutions are emerging in order to limit the accumulation of CO2. Carbon mineralization, which allows the sequestration of CO2 through carbonate precipitation, stable minerals over geological time scales, is one of the options considered. Among the proposed carbon mineralization pathways, passive carbon mineralization in ultramafic mining residues can potentially lead to developing carbon-neutral mines. However, the impacts on leachate water quality and evolution of sequestration capacity in natural conditions, on medium and large scales, are still poorly documented. RNC Minerals plans to mine a nickel deposit located in the northwestern part of Quebec. The operation at the Dumont Nickel Project (DNP) would produce approximately 1.7 Gt of ultramafic mining residues. Several factors which influence the carbon sequestration capacity of the DNP residues have been studied in the laboratory, at variable CO2 concentrations. In this study, the processes of passive carbon mineralization in the DNP mining residues are described and the atmospheric CO2 sequestration capacity is estimated, at the experimental cell scale, under natural conditions. In order to study the impacts of meteoric weathering of the DNP residues, two experimental cells were built and instrumented. The first cell EC-1, contains the ultramafic waste rock, and the second EC-2, was filled with milling residues (Tailings). The hydrogeological properties and surface area of the residues contained in the two cells are different whereas the mineralogy is similar. The main minerals in the residues are chrysotile, lizardite, brucite, chlorite and magnetite. Between 2011 and 2015, changes in CO2 concentrations, mineralogy, and chemical composition of leachate waters were recorded. Monitoring of CO2 concentrations showed a decrease in CO2 concentration from the surface (~ 390 ppmv) to the bottom of the cells (~ 100 ppmv). At the same time, the carbon content in the weathered residues increased and the mineralogical analyses revealed precipitation of several magnesium carbonates such as hydromagnesite. These observations indicate that passive mineral carbonation of the mining residues is occurring within the experimental cells, for which three potential sources of CO2 can be identified : (1) the atmosphere, (2) the CO2(g) produced from organic matter oxydation, and (3) CO2(g) produced from carbonate dissolution. The isotopic compositions of CO2(g) and newly formed carbonates were measured. Using these isotopic compositions it was possible to demonstrate that dissolution of CO2(g) in interstitial water limits the sequestration capacity and that atmospheric CO2 is the main source of the CO2 sequestered. Despite the differences between the two experimental cells the same processes control CO2 sequestration. A conceptual model of the carbon mineralization reactions, including evolution of the isotopic compositions, is proposed. The leachate water sampled at the bottom of the experimental cells, between May and November since 2011, is characterized by an alkaline pH (~9.5), a high alkalinity (~90 to ~750 mg/L CaCO3) and a high concentration of magnesium (~50 at ~750 mg/L). This composition is consistent with weathering of ultramafic rocks in a system open to CO2. Since 2012, the chemical composition of the leachate water was evolved seasonnaly. These seasonal variations are explained by: (1) recharge and temeprature variations over the year and (2) increased carbonate precipitation between May and July. The seasonal decrease of alkalinity and magnesium concentrations, caused by increased carbonate precipitation, induces undersaturation of carbonate minerals. Therefore carbonate precipitation self-limits carbon sequestration through a negative feed-back loop. Since 2011, an estimated 13 kg of atmospheric CO2 was sequestered in the milling residues from EC-2, which corresponds to a mean rate of 1,4 (+/- 0.3) kgCO2/tonne/year. Using this mean rate, during the mining operation the milling residues will sequester about 21 kt of atmospheric CO2 each year, which will represents one quarter of the 127,700 tonnes of CO2 emitted. Using MIN3P, a numerical model which allow to simulate multi-component and multiphase reactive transport in unsaturated porous media, the carbon mineralization reactions were simulated in 1D at the center of cell EC-2. The data collected during the 4 years of monitoring were used to calibrate the numerical model. However, none of the simulations allowed to reproduce the evolution of the leachate water geochemistry and the CO2 concentrations observed in the experimental cell. Several simplifications of the conceptual model could explain the differences with the observed data.

Page generated in 0.0509 seconds