Spelling suggestions: "subject:"textile fibers -- desting"" "subject:"textile fibers -- ingesting""
11 |
Alterations of physical properties of long staple cotton by combing, drawing and rovingWhitworth, Larry Blant January 1967 (has links)
No description available.
|
12 |
Determination of optimum draft distributions for combed cotton yarnsMahaffey, George Thomas January 1966 (has links)
No description available.
|
13 |
Influence of yarn and fabric construction parameters on the performance of cotton/dyneema fabrics for tent applicationsMeng, Xiaomin January 2000 (has links)
No description available.
|
14 |
The frictional properties of wool and related hair fibers.Thomas, Walter January 1969 (has links)
No description available.
|
15 |
Some effects of twist on stress-strain relationships of yarns produced from cotton-polyester fiber blendsYesiltepe, Yuksel January 1965 (has links)
No description available.
|
16 |
Behavior of twisted fiber bundles under dynamic testing conditionsLaton, Michael A. January 1999 (has links)
No description available.
|
17 |
An evaluation of fiber friction at low normal forcesGunther, Donald Harrison 05 1900 (has links)
No description available.
|
18 |
Comparative performance of natural and synthetic fibre nonwoven geotextilesTshifularo, Cyrus Alushavhiwi January 2017 (has links)
The aim of this work was to establish a range of suitable process parameters which can be utilized to produce needlepunched nonwoven fabrics for geotextile applications. Nonwoven fabrics were produced from 100% PP, a blend of 50/50% PP/kenaf and 100% kenaf fibres. The depths of needle penetration of 4, 7 and 10 mm, stroke frequencies of 250, 350 and 450 strokes/min and mass per unit area of 300, 600 and 900 g/m2 were utilized for producing the fabrics, on a Dilo loom. The effect of depth of needle penetration, stroke frequency and mass per unit area on the fabric properties, namely, tensile strength, puncture resistance, pore size, water permeability and transmissivity were analysed. In addition, the effect of chemicals, namely, 10% ammonium hydroxide (NH4OH), 10% sodium chloride (NaCl) and 3% sulphuric acid (H2SO4) solutions on degradation of the fabric was also studied. The results have shown that density, thickness and nominal weight of the needlepunched nonwoven fabrics were related to each other and they were influenced by stroke frequency, depth of needle penetration and feed rate of the needlepunching process. The increase in nominal weight of the fabrics also increases thickness and density of the fabrics. The tensile strength and puncture resistance of the fabrics increased with the increases in stroke frequency, depth of needle penetration and fabric mass per unit area. However, lower tensile strength and puncture resistance were achieved in the fabrics produced at lower stroke frequency, lower depth of needle penetration and lower mass per unit area. Bigger pores were resulted in the fabrics produced at lower stroke frequency, lower depth of needle penetration and lower mass per unit area, however, pore size decreased with increases in stroke frequency, depth of needle penetration and mass per unit area. Water permeability depends on the pore size, properties of the fibres, stroke frequency, depth of needle penetration and mass per unit area. Higher tensile strength and higher puncture resistance were achieved in the needlepunched nonwoven fabrics produced from 100% PP fibres, therefore, they are suitable for some load-bearing geotextile applications, such as reinforcement and separation. However, higher water permeability was achieved in the fabrics produced from 100% kenaf fibres, therefore, they are ideal for geotextile applications where good water permeability is required. Higher values for transmissivity were obtained in the fabrics produced from a blend of 50/50% PP/kenaf fibres, therefore they are suitable for drainage applications. The fabrics produced from a blend of 50/50% PP/kenaf fibres achieved better values of tensile strength, puncture resistance, pore size and water permeability in comparison to that produced from 100% PP and 100% kenaf fibres. However, better tensile strength and puncture resistance were achieved in the fabrics produced from 100% PP fibres and bigger pore size and higher water permeability were achieved in the fabrics produced from 100% kenaf fibres. Therefore, it can be suggested that the nonwoven fabrics produced from a blend of 50/50% PP/kenaf fibres can fulfil almost all requirements of geotextile applications, such as, filtration, separation, reinforcement and drainage. The fabrics produced from 100% PP fibres were not damaged or deteriorated when treated with all the three chemicals due to chemical inertness of polypropylene. However, the fabrics produced from a blend of 50/50% PP/kenaf and 100% kenaf fibres were damaged and deteriorated when treated with H2SO4.
|
Page generated in 0.091 seconds