• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation expérimentale et modélisation numérique du comportement thermomécanique à haute température des matériaux composites renforcés par des fibres / Experimental characterization and numerical modeling of the thermomechanical behavior at high-temperature composite materials reinforced by fibers

Tran, Manh Tien 16 July 2019 (has links)
Les matériaux composites TRC (Textile Reinforced Concrete), consistant d'une matrice cimentaire et d'un renforcement par des textile ou fibres (en carbone, en verre ou en autre matière, …) sont souvent utilisés pour réparer ou/et renforcer les éléments structurels porteurs (dalle, poutre, colonne) d'anciens ouvrages de génie civil. Ils peuvent être également utilisés comme des éléments porteurs dans les structures neuves (éléments de préfabrications). Afin de développer des composites TRC avec de bonnes caractéristiques à température élevée, on a fait une combinaison entre les textiles de carbone qui possède une bonne capacité mécanique et une matrice réfractaire qui assurent une transmission de charge entre le textile de renforcement et les protège thermiquement contre l'action de température élevée. Le comportement thermomécanique des composites TRC de carbone est expérimentalement et numériquement étudié à l'échelle mésoscopique dans cette thèse. L'avancement scientifique sur ce sujet de thèse permettrait d'améliorer la stabilité au feu des structures qui sont renforcées par des matériaux composites TRC. Ce sujet contribuerait aux intérêts sociaux et économiques significatifs pour le génie civil dans le monde entier en général et au Vietnam en particulier. La thèse concerne la caractérisation expérimentale et modélisation numérique du comportement thermomécanique à température élevée des matériaux composites TRC à l'échelle mésoscopique. Dans une première partie expérimentale, les textiles de carbone (des produits commerciaux sur le marché), la matrice du béton réfractaire et l'interface textile/matrice ont été testés au régime thermomécanique à température constante (allant de 25 °C à 700 °C). Les résultats obtenus montrent un effet du traitement du textile sur le comportement et mode de rupture des textiles de carbone et de l'interface textile/matrice. Un modèle analytique a été également utilisé pour déterminer l'évolution des propriétés thermomécaniques des textiles de carbone en fonction de la température. Le transfert thermique dans l'éprouvette cylindrique du béton réfractaire a été réalisé pour valider les propriétés thermiques du béton réfractaire. Tous les résultats obtenus dans cette partie sont utilisés comme données pour le modèle numérique dans la partie de modélisation. La deuxième partie expérimentale explore le comportement thermomécanique des TRCs sous deux régimes : thermomécanique à température constante et thermomécanique à force constante. Deux textiles de carbone, qui ont donné les meilleures performances à température élevée, ont été choisis pour une fabrication des TRCs. Les résultats expérimentaux montrent un comportement thermomécanique avec l'écrouissage (trois ou deux phases) à température modérée et un comportement fragile à température supérieure de 500 °C. Au régime thermomécanique à force constante, deux composites TRCs peuvent résister plus long que les textiles de carbone seuls grâce à bonne isolation thermique de la matrice cimentaire. En comparant les deux résultats sur les éprouvettes de TRC, l'effet du renforcement de textile (le taux de renfort, le produit de traitement, la géométrie du textile) sur le comportement thermomécanique a été analysé. Tous les résultats expérimentaux de cette partie ont été utilisés pour valider et comparer avec ceux obtenus à partir du modèle numérique. La partie de modélisation numérique a deux buts : prédire le comportement thermomécanique global du composite TRC à partir des propriétés thermomécaniques des matériaux constitutifs ; valider le transfert thermique dans le composite en cas d'augmentation de la température pour prédire la température de rupture ou la durée d'exposition du composite [etc...] / TRC materials, consisting of a cement matrix and a reinforcement by textiles or fibers (carbon, glass or other fibre, etc) are often used to repair or/and strengthen the loading structural elements (slab, beam, column) of old civil engineering works. They can also be used as loading elements in new structures (prefabrication element). In order to develop TRC composites with good characteristics at high temperature, a combination has been made between the carbon textiles which have a good mechanical capacity and a refractory matrix which provides a load transfer between the reinforcement textiles and thermally protects them against the action of high temperature. The thermomechanical behavior of carbon TRC composites is experimentally and numerically studied at the mesoscale in this thesis. Scientific advancement on this thesis topic would improve the fire stability of structures that are reinforced by TRC composite materials. This topic would contribute to significant social and economic interests for civil engineering worldwide in general and Vietnam in particular. My thesis work concerns the experimental characterization and numerical modeling of the high temperature thermomechanical behavior of composite materials TRC at the mesoscale. In a first experimental part, the carbon textiles (commercial products on the market), the refractory concrete matrix and the textile/matrix interface were tested at constant temperature thermomechanical regime (ranging from 25 °C to 700 °C). The results obtained showed an effect of the textile treatment on the mechanical behavior and failure mode of the carbon textiles and the textile/matrix interface. An analytical model was also used to identify the evolution of thermomechanical properties of carbon textiles as a function of temperature. The thermal transfer in the cylindrical specimen was carried out to validate the thermal properties of refractory concrete. All results obtained in this part are used as input data for the numerical model in the modeling part. The second experimental part explores the thermomechanical behavior of TRCs under two regimes: thermomechanical at constant temperature and thermomechanical at constant force. Two carbon textiles, which gave the best performance at high temperature, were chosen for the manufacture of TRCs. The experimental results showed a hardening behavior with three or two phases at moderate temperature and a brittle behavior at higher temperature of 500 °C. In thermomechanical regime at constant force, two TRC composites can resist longer than carbon textiles alone thanks to good thermal insulation of refractory matrix. By comparing the two results on the TRC specimens, the effect of textile reinforcement (reinforcement ratio, treatment product and textile geometry) on the thermomechanical behavior was analyzed. All the experimental results of this part were used to validate and compare with those obtained from the numerical model. The purpose of the numerical modeling part is to predict the global thermomechanical

Page generated in 0.079 seconds