• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réductibilité et théorie de Floquet pour des systèmes différenciels non linéaires / Reducibility and Floquet theory for nonlinear differential systems

Ben Slimene, Jihed 25 March 2013 (has links)
On utilise la théorie de Floquet-Lin pour des systèmes différentiels linéaires quasi- périodiques pour établir des résultats d'existence et d'unicité et de dépendance continue des systèmes différentiels non linéaires quasi-périodiques. Et dans un second temps on établit un résultat de réductibilité d'un système différentiel linéaire presque-périodique en un système différentiel linéaire triangulaire supérieur avec conservation du nombre des solutions presque-périodiques indépendantes. Ensuite, un résultat d’existence et d’unicité et de dépendance continue des systèmes différentiels non linéaires presque-périodiques par rapport au terme du contrôle. / We use a Floquet theory for quasi-periodic linear ordinary differential equations due to Zhensheng Lin to obtain results, of existence, unicity, continuous and differentiable dependence, on the quasi-periodic solutions of quasi-periodic nonlinear ordinary differential equations. in a second time we establish the reducibility of linear systems of almost periodic differential equations into upper triangular systems of a. p. differential equations. This is done while the number of independent a. p. solutions is conserved. We prove existence and uniqueness of a. p. solutions of a nonlinear system with an a. p. linear part. Also we prove the continuous dependence of a. p. solutions of a nonlinear system with respect to an a. p. control term.

Page generated in 0.054 seconds