• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 60
  • 38
  • 32
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 362
  • 362
  • 362
  • 132
  • 93
  • 88
  • 84
  • 79
  • 63
  • 61
  • 49
  • 49
  • 40
  • 38
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of the multigrid method

Shah, Tasneem Mohammad January 1989 (has links)
No description available.
2

A spectral Lagrange-Galerkin method for periodic/non-periodic convection-dominated diffusion problems

Baker, M. D. January 1994 (has links)
No description available.
3

The effects of curvature and divergence on turbulent mixing layers

Johnson, A. E. January 1990 (has links)
No description available.
4

Fully implicit solution of the Navier-Stokes equations and its application to non-rectangular geometry by the use of orthogonal mesh generation /

Govenar, Robert Gerald January 1979 (has links)
No description available.
5

Numerical simulation of 2D flow past a dimpled cylinder using a pseudospectral method

Kotovshchikova, Marina 08 January 2007 (has links)
A numerical simulation of steady and unsteady two-dimensional flows past cylinder with dimples based on highly accurate pseudospectral method is the subject of the present thesis. The vorticity-streamfunction formulation of two-dimensional incompressible Navier-Stokes equations with no-slip boundary conditions is used. The system is formulated on a unit disk using curvilinear body fitted coordinate system. Key issues of the curvilinear coordinate transformation are discussed, to show its importance in properly defined node distribution. For the space discretization of the governing system the Fourier-Chebyshev pseudospectral approximation on a unit disk is implemented. To handle the singularity at the pole of the unit disk the approach of defining the computational grid proposed by Fornberg was implemented. Two algorithms for solving steady and unsteady problems are presented. For steady flow simulations the non-linear time-independent Navier-Stokes problem is solved using the Newton's method. For the time-dependent problem the semi-implicit third order Adams-Bashforth/Backward Differentiation scheme is used. In both algorithms the fully coupled system with two no-slip boundary conditions is solved. Finally numerical result for both steady and unsteady solvers are presented. A comparison of results for the smooth cylinder with those from other authors shows good agreement. Spectral accuracy is demonstrated using the steady solver. / February 2007
6

An implicit finite difference procedure for the laminar, supersonic base flow

Roach, Robert Landon 12 1900 (has links)
No description available.
7

Steady and unsteady internal flow computations via the solution of the compressible navier stokes equations for low mach numbers

Ekaterinaris, John A. 08 1900 (has links)
No description available.
8

Numerical simulation of 2D flow past a dimpled cylinder using a pseudospectral method

Kotovshchikova, Marina 08 January 2007 (has links)
A numerical simulation of steady and unsteady two-dimensional flows past cylinder with dimples based on highly accurate pseudospectral method is the subject of the present thesis. The vorticity-streamfunction formulation of two-dimensional incompressible Navier-Stokes equations with no-slip boundary conditions is used. The system is formulated on a unit disk using curvilinear body fitted coordinate system. Key issues of the curvilinear coordinate transformation are discussed, to show its importance in properly defined node distribution. For the space discretization of the governing system the Fourier-Chebyshev pseudospectral approximation on a unit disk is implemented. To handle the singularity at the pole of the unit disk the approach of defining the computational grid proposed by Fornberg was implemented. Two algorithms for solving steady and unsteady problems are presented. For steady flow simulations the non-linear time-independent Navier-Stokes problem is solved using the Newton's method. For the time-dependent problem the semi-implicit third order Adams-Bashforth/Backward Differentiation scheme is used. In both algorithms the fully coupled system with two no-slip boundary conditions is solved. Finally numerical result for both steady and unsteady solvers are presented. A comparison of results for the smooth cylinder with those from other authors shows good agreement. Spectral accuracy is demonstrated using the steady solver.
9

Numerical simulation of 2D flow past a dimpled cylinder using a pseudospectral method

Kotovshchikova, Marina 08 January 2007 (has links)
A numerical simulation of steady and unsteady two-dimensional flows past cylinder with dimples based on highly accurate pseudospectral method is the subject of the present thesis. The vorticity-streamfunction formulation of two-dimensional incompressible Navier-Stokes equations with no-slip boundary conditions is used. The system is formulated on a unit disk using curvilinear body fitted coordinate system. Key issues of the curvilinear coordinate transformation are discussed, to show its importance in properly defined node distribution. For the space discretization of the governing system the Fourier-Chebyshev pseudospectral approximation on a unit disk is implemented. To handle the singularity at the pole of the unit disk the approach of defining the computational grid proposed by Fornberg was implemented. Two algorithms for solving steady and unsteady problems are presented. For steady flow simulations the non-linear time-independent Navier-Stokes problem is solved using the Newton's method. For the time-dependent problem the semi-implicit third order Adams-Bashforth/Backward Differentiation scheme is used. In both algorithms the fully coupled system with two no-slip boundary conditions is solved. Finally numerical result for both steady and unsteady solvers are presented. A comparison of results for the smooth cylinder with those from other authors shows good agreement. Spectral accuracy is demonstrated using the steady solver.
10

An investigation of the steady-state performance of a pressurized air wave journal bearing

Kuznetov, Alexandru Marius. January 2010 (has links)
Thesis (M.S.)--University of Toledo, 2010. / Typescript. "Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science degree in Mechanical Engineering." "A thesis entitled"--at head of title. Title from title page of PDF document. Bibliography: p. 51-56.

Page generated in 0.1261 seconds