Spelling suggestions: "subject:"heorem proving"" "subject:"atheorem proving""
141 |
Contando as simetrias rotacionais dos poliedros regularesMonteiro, Guilherme Elias Egg 12 July 2013 (has links)
CAPES / Esta dissertação está dividida em duas partes. A primeira parte é uma introdução da teoria básica de grupos necessária para o desenvolvimento do teorema da órbita-estabilizador, que permite fazer as contagens das simetrias dos poliedros regulares. A segunda parte é a descrição de uma atividade aplicada em sala de aula. / This dissertation is divided in two parts. The first part is an introduction to basic group theory required for the development of the orbit-stabilizer theorem, that allows the counts of symmetries of the regular polyhedra. The second part is the description of an activity applied in classroom.
|
142 |
Otimização por nuvem de partículas aplicada ao problema de atribuição de tarefas dinâmicoPierobom, Jean Lima 13 February 2012 (has links)
A Inteligência de Enxame (Swarm Intelligence) é uma área de estudos que busca soluções para problemas de otimização utilizando-se de técnicas computacionais inspiradas no comportamento social emergente encontrado na biologia. A metaheurística Particle Swarm Optimization (PSO) é relativamente nova e foi inspirada no comportamento social de bandos de pássaros. PSO tem apresentado bons resultados em alguns trabalhos recentes de otimização discreta, apesar de ter sido concebido originalmente para a otimização de problemas contínuos. Este trabalho trata o Problema de Atribuição de Tarefas - Task Assignment Problem (TAP), e apresenta uma aplicação: o problema de alocação de táxis e clientes, cujo objetivo da otimização está em minimizar a distância percorrida pela frota. Primeiramente, o problema é resolvido em um cenário estático, com duas versões do PSO discreto: a primeira abordagem é baseada em codificação binária e a segunda utiliza permutações para codificar as soluções. Os resultados obtidos mostram que a segunda abordagem é superior à primeira em termos de qualidade das soluções e tempo computacional, e é capaz de encontrar as soluções ótimas para o problema nas instâncias para as quais os valores ótimos são conhecidos. A partir disto, o algoritmo é adaptado para a otimização do problema em um ambiente dinâmico, com a aplicação de diferentes estratégias de resposta às mudanças. Os novos resultados mostram que a combinação de algumas abordagens habilita o algoritmo PSO a obter boas soluções ao longo da ocorrência de mudanças nas variáveis de decisão problema, em todas as instâncias testadas, com diferentes tamanhos e escalas de mudança. / Swarm Intelligence searches for solutions to optimization problems using computational techniques inspired in the emerging social behavior found in biology. The metaheuristic Particle Swarm Optimization (PSO) is relatively new and can be considered a metaphor of bird flocks. PSO has shown good results in some recent works of discrete optimization, despite it has been originally designed for continuous optimization problems. This paper deals with the Task Assignment Problem (TAP), and presents an application: the optimization problem of allocation of taxis and customers, whose goal is to minimize the distance traveled by the fleet. The problem is solved in a static scenario with two versions of the discrete PSO: the first approach that is based on a binary codification and the second one which uses permutations to encode the solution. The obtained results show that the second approach is superior than the first one in terms of quality of the solutions and computational time, and it is capable of achieving the known optimal values in the tested instances of the problem. From this, the algorithm is adapted for the optimization of the problem in a dynamic environment, with the application of different strategies to respond to changes. The new results show that some combination of approaches enables the PSO algorithm to achieve good solutions along the occurrence of changes in decision variables problem, in all instances tested, with different sizes and scales of change.
|
143 |
Computational Issues in Calculi of Partial Inductive DefinitionsKreuger, Per January 1995 (has links)
We study the properties of a number of algorithms proposed to explore the computational space generated by a very simple and general idea: the notion of a mathematical definition and a number of suggested formal interpretations ofthis idea. Theories of partial inductive definitions (PID) constitute a class of logics based on the notion of an inductive definition. Formal systems based on this notion can be used to generalize Horn-logic and naturally allow and suggest extensions which differ in interesting ways from generalizations based on first order predicate calculus. E.g. the notion of completion generated by a calculus of PID and the resulting notion of negation is completely natural and does not require externally motivated procedures such as "negation as failure". For this reason, computational issues arising in these calculi deserve closer inspection. This work discuss a number of finitary theories of PID and analyzethe algorithmic and semantical issues that arise in each of them. There has been significant work on implementing logic programming languages in this setting and we briefly present the programming language and knowledge modelling tool GCLA II in which many of the computational prob-lems discussed arise naturally in practice. / <p>Also published as SICS Dissertation no. SICS-D-19</p>
|
144 |
[en] TECHNIQUES FOR THE USE OF HOARE LOGIC IN PCC / [pt] TÉCNICAS PARA O USO DO CÁLCULO DE HOARE EM PCCJULIANA CARPES IMPERIAL 22 January 2004 (has links)
[pt] Atualmente, a maioria dos programas para computadores é
obtida através da WEB. Como muitas vezes a procedência
são fontes desconhecidas, é preciso se certificar de que
o código se comporta como o esperado. A solução ideal
seria verificar o código contra uma especificação de
políticas de segurança ,contudo, isso pode consumir muito
tempo.Uma outra alternativa é fazer com que o próprio
código prove ser seguro. O conceito de proof-carryng code
(PCC)é baseado nessa idéia : um programa carrega consigo
uma prova de sua conformidade com certas políticas de
segurança. Ou seja ,ele carrega uma prova a respeito de
propriedades do próprio código. Portanto, os mesmos
métodos froamsi usados para a verificação de programs
podem se utilizados para esta tecnolgia. Considerando
este fato,neste trabalho é estudado como cálculo de
Hoare, em método formal para realizar a verificação de
programas, aplicado a códigos-fonte escritos em uma
linguagem de programação imperativa, pode ser útil
á tecnica de PCC. Conseqüentemente, são pesquisados
métodos para a geração de provas de correção de programas
utilizando o método citado, para tornar possível a
geração de provas de segurança para PCC utilizando o
cálculo de Hoare. / [en] Nowdays most computer programs are obtained from the
WEB. Since their source is usually unknown, it is necessary
to be sure that the code of the program behaves as
expected.The ideal solution would be verify the code
against a specification of safety policies.However, this
can take too much time.Another approach is making the code
itself prove that it is safe. The concept os proof-carryng
code (PCC) is based on this idea: a program carries a proof
of its conformity with certain safety policies. That is ,
it carries a proof cencerning properties related to the
code itself. Therefore, the same formal methods employed in
formal verification of programs can be used in this
tecnology. Due to this fact, in this work it is studied how
Hoare logic applied to source codes written in an
imperative programming language, which is a formal methods
are researched to generate proofs of program correctness
using the method explained, so that it can be possible to
generate PCC safety programs with Hoare logic.
|
145 |
Knowledge-Based General Game PlayingSchiffel, Stephan 29 July 2011 (has links)
The goal of General Game Playing (GGP) is to develop a system, that is able to automatically play previously unseen games well, solely by being given the rules of the game.
In contrast to traditional game playing programs, a general game player cannot be given game specific knowledge.
Instead, the program has to discover this knowledge and use it for effectively playing the game well without human intervention.
In this thesis, we present a such a program and general methods that solve a variety of knowledge discovery problems in GGP.
Our main contributions are methods for the automatic construction of heuristic evaluation functions, the automated discovery of game structures, a system for proving properties of games, and symmetry detection and exploitation for general games.:1. Introduction
2. Preliminaries
3. Components of Fluxplayer
4. Game Tree Search
5. Generating State Evaluation Functions
6. Distance Estimates for Fluents and States
7. Proving Properties of Games
8. Symmetry Detection
9. Related Work
10. Discussion
|
146 |
Applications of Foundational Proof Certificates in theorem proving / Applications des Certificats de Preuve Fondamentaux à la démonstration automatique de théorèmesBlanco Martínez, Roberto 21 December 2017 (has links)
La confiance formelle en une propriété abstraite provient de l'existence d'une preuve de sa correction, qu'il s'agisse d'un théorème mathématique ou d'une qualité du comportement d'un logiciel ou processeur. Il existe de nombreuses définitions différentes de ce qu'est une preuve, selon par exemple qu'elle est écrite soit par des humains soit par des machines, mais ces définitions sont toutes concernées par le problème d'établir qu'un document représente en fait une preuve correcte. Le cadre des Certificats de Preuve Fondamentaux (Foundational Proof Certificates, FPC) est une approche proposée récemment pour étudier ce problème, fondée sur des progrès de la théorie de la démonstration pour définir la sémantique des formats de preuve. Les preuves ainsi définies peuvent être vérifiées indépendamment par un noyau vérificateur de confiance codé dans un langage de programmation logique. Cette thèse étend des résultats initiaux sur la certification de preuves du premier ordre en explorant plusieurs dimensions logiques essentielles, organisées en combinaisons correspondant à leur usage en pratique: d'abord, la logique classique sans points fixes, dont les preuves sont générées par des démonstrateurs automatiques de théorème; ensuite, la logique intuitionniste avec points fixes et égalité,dont les preuves sont générées par des assistants de preuve. Les certificats de preuve ne se limitent pas comme précédemment à servir de représentation des preuves complètes pour les vérifier indépendamment. Leur rôle s'étend pour englober des transformations de preuve qui peuvent enrichir ou compacter leur représentation. Ces transformations peuvent rendre des certificats plus simples opérationnellement, ce qui motive la construction d'une suite de vérificateurs de preuve de plus en plus fiables et performants. Une autre nouvelle fonction des certificats de preuve est l'écriture d'aperçus de preuve de haut niveau, qui expriment des schémas de preuve tels qu'ils sont employés dans la pratique des mathématiciens, ou dans des techniques automatiques comme le property-based testing. Ces développements s'appliquent à la certification intégrale de résultats générés par deux familles majeures de démonstrateurs automatiques de théorème, utilisant techniques de résolution et satisfaisabilité, ainsi qu'à la création de langages programmables de description de preuve pour un assistant de preuve. / Formal trust in an abstract property, be it a mathematical result or a quality of the behavior of a computer program or a piece of hardware, is founded on the existence of a proof of its correctness. Many different kinds of proofs are written by mathematicians or generated by theorem provers, with the common problem of ascertaining whether those claimed proofs are themselves correct. The recently proposed Foundational Proof Certificate (FPC) framework harnesses advances in proof theory to define the semantics of proof formats, which can be verified by an independent and trusted proof checking kernel written in a logic programming language. This thesis extends initial results in certification of first-order proofs in several directions. It covers various essential logical axes grouped in meaningful combinations as they occur in practice: first,classical logic without fixed points and proofs generated by automated theorem provers; later, intuitionistic logic with fixed points and equality as logical connectives and proofs generated by proof assistants. The role of proof certificates is no longer limited to representing complete proofs to enable independent checking, but is extended to model proof transformations where details can be added to or subtracted from a certificate. These transformations yield operationally simpler certificates, around which increasingly trustworthy and performant proof checkers are constructed. Another new role of proof certificates is writing high-level proof outlines, which can be used to represent standard proof patterns as written by mathematicians, as well as automated techniques like property-based testing. We apply these developments to fully certify results produced by two families of standard automated theorem provers: resolution- and satisfiability-based. Another application is the design of programmable proof description languages for a proof assistant.
|
147 |
Evaluating reasoning heuristics for a hybrid theorem proving platformAckermann, Jacobus Gideon 06 1900 (has links)
Text in English with abstracts in English, Afrikaans and isiZulu / The formalisation of first-order logic and axiomatic set theory in the first half of the 20th century—along with the advent of the digital computer—paved the way for the development of automated theorem proving. In the 1950s, the automation of proof developed from proving elementary geometric problems and finding direct proofs for problems in Principia Mathematica by means of simple, human-oriented rules of inference. A major advance in the field of automated theorem proving occurred in 1965, with the formulation of the resolution inference mechanism. Today, powerful Satisfiability Modulo Theories (SMT) provers combine SAT solvers with sophisticated knowledge from various problem domains to prove increasingly complex theorems.
The combinatorial explosion of the search space is viewed as one of the major challenges to progress in the field of automated theorem proving. Pioneers from the 1950s and 1960s have already identified the need for heuristics to guide the proof search effort.
Despite theoretical advances in automated reasoning and technological advances in computing, the size of the search space remains problematic when increasingly complex proofs are attempted. Today, heuristics are still useful and necessary to discharge complex proof obligations.
In 2000, a number of heuristics was developed to aid the resolution-based prover OTTER in finding proofs for set-theoretic problems. The applicability of these heuristics to next-generation theorem provers were evaluated in 2009. The provers Vampire and Gandalf required respectively 90% and 80% of the applicable OTTER heuristics.
This dissertation investigates the applicability of the OTTER heuristics to theorem proving in the hybrid theorem proving environment Rodin—a system modelling tool suite for the Event-B formal method. We show that only 2 of the 10 applicable OTTER heuristics were useful when discharging proof obligations in Rodin. Even though we argue that the OTTER heuristics were largely ineffective when applied to Rodin proofs, heuristics were still needed when proof obligations could not be discharged automatically. Therefore, we
propose a number of our own heuristics targeted at theorem proving in the Rodin tool suite. / Die formalisering van eerste-orde-logika en aksiomatiese versamelingsteorie in die eerste helfte van die 20ste eeu, tesame met die koms van die digitale rekenaar, het die weg vir die ontwikkeling van geoutomatiseerde bewysvoering gebaan. Die outomatisering van bewysvoering het in die 1950’s ontwikkel vanuit die bewys van
elementêre meetkundige probleme en die opspoor van direkte bewyse vir probleme in Principia Mathematica deur middel van eenvoudige, mensgerigte inferensiereëls. Vooruitgang is in 1965 op die gebied van geoutomatiseerde bewysvoering gemaak toe die resolusie-inferensie-meganisme geformuleer is. Deesdae kombineer kragtige Satisfiability Modulo Theories (SMT) bewysvoerders SAT-oplossers met gesofistikeerde kennis vanuit verskeie probleemdomeine om steeds meer komplekse stellings te bewys.
Die kombinatoriese ontploffing van die soekruimte kan beskou word as een van die grootste uitdagings vir verdere vooruitgang in die veld van geoutomatiseerde bewysvoering. Baanbrekers uit die 1950’s en 1960’s het reeds bepaal dat daar ’n behoefte is aan heuristieke om die soektog na bewyse te rig.
Ten spyte van die teoretiese vooruitgang in outomatiese bewysvoering en die tegnologiese vooruitgang in die rekenaarbedryf, is die grootte van die soekruimte steeds problematies wanneer toenemend komplekse bewyse aangepak word. Teenswoordig is heuristieke steeds nuttig en noodsaaklik om komplekse bewysverpligtinge uit te voer.
In 2000 is ’n aantal heuristieke ontwikkel om die resolusie-gebaseerde bewysvoerder OTTER te help om bewyse vir versamelingsteoretiese probleme te vind. Die toepaslikheid van hierdie heuristieke vir die volgende generasie bewysvoerders is in 2009 geëvalueer. Die bewysvoerders Vampire en Gandalf het onderskeidelik 90% en 80% van die toepaslike OTTER-heuristieke nodig gehad.
Hierdie verhandeling ondersoek die toepaslikheid van die OTTER-heuristieke op bewysvoering in die hibriede bewysvoeringsomgewing Rodin—’n stelselmodelleringsuite vir die formele Event-B-metode. Ons toon dat slegs 2 van die 10 toepaslike OTTER-heuristieke van nut was vir die uitvoering van bewysverpligtinge in Rodin. Ons voer aan dat die OTTER-heuristieke grotendeels ondoeltreffend was toe dit op Rodin-bewyse toegepas is. Desnieteenstaande is heuristieke steeds nodig as bewysverpligtinge nie outomaties uitgevoer kon word nie. Daarom stel ons ’n aantal van ons eie heuristieke voor wat in die Rodin-suite aangewend kan word. / Ukwenziwa semthethweni kwe-first-order logic kanye ne-axiomatic set theory ngesigamu sokuqala sekhulunyaka lama-20—kanye nokufika kwekhompyutha esebenza ngobuxhakaxhaka bedijithali—kwavula indlela ebheke ekuthuthukisweni kwenqubo-kusebenza yokufakazela amathiyoremu ngekhomyutha. Ngeminyaka yawo-1950, ukuqinisekiswa kobufakazi kwasuselwa ekufakazelweni kwezinkinga zejiyomethri eziyisisekelo kanye nasekutholakaleni kobufakazi-ngqo bezinkinga eziphathelene ne-Principia Mathematica ngokuthi kusetshenziswe
imithetho yokuqagula-sakucabangela elula, egxile kubantu. Impumelelo enkulu emkhakheni wokufakazela amathiyoremu ngekhompyutha yenzeka ngowe-1965, ngokwenziwa semthethweni kwe-resolution inference mechanism. Namuhla, abafakazeli abanohlonze bamathiyori abizwa nge-Satisfiability Modulo Theories (SMT) bahlanganisa ama-SAT solvers nolwazi lobungcweti oluvela kwizizinda zezinkinga ezihlukahlukene ukuze bakwazi ukufakazela amathiyoremu okungelula neze ukuwafakazela.
Ukukhula ngesivinini kobunzima nobunkimbinkimbi benkinga esizindeni esithile kubonwa njengenye yezinselelo ezinkulu okudingeka ukuthi zixazululwe ukuze kube nenqubekela phambili ekufakazelweni kwamathiyoremu ngekhompyutha. Amavulandlela eminyaka yawo-1950 nawo-1960 asesihlonzile kakade isidingo sokuthi amahuristikhi (heuristics) kube yiwona ahola umzamo wokuthola ubufakazi.
Nakuba ikhona impumelelo esiyenziwe kumathiyori ezokucabangela okujulile kusetshenziswa amakhompyutha kanye nempumelelo yobuchwepheshe bamakhompyutha, usayizi wesizinda usalokhu uyinkinga uma kwenziwa imizamo yokuthola ubufakazi obuyinkimbinkimbi futhi obunobunzima obukhudlwana. Namuhla imbala, amahuristikhi asewuziso futhi ayadingeka ekufezekiseni izibopho zobufakazi obuyinkimbinkimbi.
Ngowezi-2000, kwathuthukiswa amahuristikhi amaningana impela ukuze kulekelelwe uhlelo-kusebenza olungumfakazeli osekelwe phezu kwesixazululo, olubizwa nge-OTTER, ekutholeni ubufakazi bama-set-theoretic problems. Ukusebenziseka kwalawa mahuristikhi kwizinhlelo-kusebenza ezingabafakazeli bamathiyoremu besimanjemanje kwahlolwa ngowezi-2009. Uhlelo-kusebenza olungumfakazeli, olubizwa nge-Vampire kanye nalolo olubizwa nge-Gandalf zadinga ama-90% kanye nama-80%, ngokulandelana kwazo, maqondana nama-OTTER heuristics afanelekile.
Lolu cwaningo luphenya futhi lucubungule ukusebenziseka kwama-OTTER heuristics ekufakazelweni kwamathiyoremu esimweni esiyinhlanganisela sokufakazela amathiyoremu esibizwa nge-Rodin—okuyi-system modelling tool suite eqondene ne-Event-B formal method. Kulolu cwaningo siyabonisa ukuthi mabili kuphela kwayi-10 ama-OTTER heuristics aba wusizo ngenkathi kufezekiswa isibopho sobufakazi ku-Rodin. Nakuba sibeka umbono wokuthi esikhathini esiningi ama-OTTER heuristics awazange abe wusizo uma esetshenziswa kuma-Rodin proofs, amahuristikhi asadingeka ezimweni lapho izibopho zobufakazi zingazenzekelanga ngokwazo ngokulawulwa yizinhlelo-kusebenza zekhompyutha. Ngakho-ke, siphakamisa amahuristikhi ethu amaningana angasetshenziswa ekufakazeleni amathiyoremu ku-Rodin tool suite. / School of Computing / M. Sc. (Computer Science)
|
148 |
Provably Sound and Secure Automatic Proving and Generation of Verification Conditions / Tillförlitligt sund och säker automatisk generering och bevisning av verifieringsvillkorLundberg, Didrik January 2018 (has links)
Formal verification of programs can be done with the aid of an interactive theorem prover. The program to be verified is represented in an intermediate language representation inside the interactive theorem prover, after which statements and their proofs can be constructed. This is a process that can be automated to a high degree. This thesis presents a proof procedure to efficiently generate a theorem stating the weakest precondition for a program to terminate successfully in a state upon which a certain postcondition is placed. Specifically, the Poly/ML implementation of the SML metalanguage is used to generate a theorem in the HOL4 interactive theorem prover regarding the properties of a program written in BIR, an abstract intermediate representation of machine code used in the PROSPER project. / Bevis av säkerhetsegenskaper hos program genom formell verifiering kan göras med hjälp av interaktiva teorembevisare. Det program som skall verifieras representeras i en mellanliggande språkrepresentation inuti den interaktiva teorembevisaren, varefter påståenden kan konstrueras, som sedan bevisas. Detta är en process som kan automatiseras i hög grad. Här presenterar vi en metod för att effektivt skapa och bevisa ett teorem som visar sundheten hos den svagaste förutsättningen för att ett program avslutas framgångsrikt under ett givet postvillkor. Specifikt använder vi Poly/ML-implementationen av SML för att generera ett teorem i den interaktiva teorembevisaren HOL4 som beskriver egenskaper hos ett program i BIR, en abstrakt mellanrepresentation av maskinkod som används i PROSPER-projektet.
|
149 |
An Active Domain Node Architecture for the Semantic Web / Eine Knotenarchitektur mit aktivem Verhalten für das Semantic WebSchenk, Franz 21 November 2008 (has links)
No description available.
|
Page generated in 0.0673 seconds