• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1200
  • 333
  • 183
  • 130
  • 49
  • 47
  • 47
  • 47
  • 47
  • 47
  • 47
  • 19
  • 16
  • 5
  • 3
  • Tagged with
  • 1860
  • 1860
  • 495
  • 358
  • 275
  • 223
  • 189
  • 172
  • 169
  • 167
  • 165
  • 144
  • 127
  • 125
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Abnormal response of osteoblasts to melatonin in adolescent idiopathic scoliosis.

January 2009 (has links)
Man, Chi Wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 141-184). / Abstract also in Chinese. / Acknowledgements --- p.ii / Abstract --- p.iv / Abbreviations --- p.xi / List of Tables --- p.xviii / List of Figures --- p.xx / Major Conference Presentations --- p.xxii / Publications in Preparation --- p.xxiv / Study Flowchart --- p.xxv / Chapter Chapter 1 --- Study Background --- p.1 / Chapter 1. --- Introduction --- p.2 / Chapter 1.1. --- General Overview of Adolescent Idiopathic Scoliosis (AIS) --- p.2 / Chapter 1.2. --- Natural History --- p.3 / Chapter 1.3. --- Current Treatments --- p.5 / Chapter 1.4. --- Additional Phenotypes Abnormalities --- p.9 / Chapter 1.5. --- Bone Modeling and Remodeling in Adolescents --- p.14 / Chapter 1.6. --- Bone Development --- p.15 / Chapter 1.7. --- Bone (re)modeling by osteoclasts and osteoblasts --- p.17 / Chapter 1.8. --- Factors Affecting Osteoblasts Regulation --- p.19 / Chapter 1.9. --- Current Hypothesis on the Etiology of AIS --- p.21 / Chapter 1.10. --- Melatonin --- p.26 / Chapter Chapter 2 --- Hypothesis and Objectives --- p.47 / Chapter 2. --- Hypothesis and Objectives --- p.48 / Chapter 2.1. --- Study Hypothesis --- p.48 / Chapter 2.2. --- Objectives --- p.48 / Chapter Chapter 3 --- Study on the Anthropometric Parameters and Bone Geometry of Girls with Severe AIS --- p.49 / Chapter 3.1. --- Introduction --- p.50 / Chapter 3.2. --- Methodology --- p.51 / Chapter 3.2.1. --- Recruitment of Subjects --- p.51 / Chapter 3.2.2. --- Evaluation of Curve Severity of Scoliosis --- p.52 / Chapter 3.2.3. --- Anthropometric Measurements --- p.53 / Chapter 3.2.4. --- Measurements of BMD --- p.53 / Chapter 3.2.5. --- Data Analysis --- p.54 / Chapter 3.3. --- Results --- p.55 / Chapter 3.3.1. --- Anthropometry --- p.55 / Chapter 3.3.2. --- BMD of Femoral Neck and Midshaft of Radius --- p.56 / Chapter 3.4. --- Discussion --- p.57 / Chapter Chapter 4 --- Response of Osteoblasts to Melatonin in AIS Girls In vitro Study --- p.69 / Chapter 4.1. --- Introduction --- p.70 / Chapter 4.2. --- Methodology --- p.72 / Chapter 4.2.1. --- Subjects Recruitments --- p.72 / Chapter 4.2.2. --- Cell Isolation --- p.73 / Chapter 4.2.3. --- Effect of Melatonin on Proliferation and Differentiation of AIS Osteoblasts --- p.76 / Chapter 4.2.4. --- Data Analysis --- p.79 / Chapter 4.3. --- Results --- p.80 / Chapter 4.3.1. --- Isolated Osteoblasts from Normal Human and AIS Patients --- p.80 / Chapter 4.3.2. --- Effect of Melatonin on Osteoblasts Proliferation --- p.80 / Chapter 4.3.3. --- Effect of Melatonin on Cell Differentiation --- p.81 / Chapter 4.4. --- Discussion --- p.83 / Chapter Chapter 5 --- Expression of MT1 and MT2 receptors in AIS Osteoblasts --- p.101 / Chapter 5.1. --- Introduction --- p.102 / Chapter 5.2. --- Methodology --- p.104 / Chapter 5.2.1. --- Osteoblast Samples --- p.104 / Chapter 5.2.2. --- Protein Expression of Melatonin Receptors in AIS Osteoblasts. --- p.105 / Chapter 5.2.3. --- Genotyping of MT2 receptors by Restriction Fragment Length Polymorphism (RFLP) --- p.109 / Chapter 5.2.4. --- Clinical Evaluations of the AIS Patients --- p.110 / Chapter 5.2.5. --- Data Analysis --- p.110 / Chapter 5.3. --- Results --- p.111 / Chapter 5.3.1. --- Semi quantification of Melatonin Receptors in AIS Osteoblasts 111 --- p.111 / Chapter 5.3.2. --- RFLP --- p.112 / Chapter 5.3.3. --- Functional Response Between the Different AIS Groups --- p.112 / Chapter 5.3.4. --- Correlation of the Clinical Phenotypes with the Different AIS Subgroups --- p.114 / Chapter 5.4. --- Discussion --- p.115 / Chapter Chapter 6 --- Summary and Conclusion --- p.132 / Chapter 6.1. --- Summary and Discussion --- p.133 / Chapter 6.2. --- Limitations and Further Studies --- p.136 / Chapter 6.3. --- Conclusion --- p.138 / Bibliography --- p.141 / Appendix I --- p.185 / Appendix II --- p.186 / Appeddix III --- p.187 / Appendix IV --- p.188 / Appendix V --- p.189 / Appendix VI --- p.190
352

Functional roles of NYD-SP8 in cancer development and progression. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Cancer/testis (CT) antigens are encoded by genes that are normally expressed only in the human germ-line, but are also expressed in various tumor types. CT antigens are also being studied for their roles in carcinogenesis as well as for their potentials as targets for anti-cancer therapy. A novel CT gene, NYD-SP8, (Accession No. AY014285.1) has recently been identified. It is located to human chromosome 19q13.31 and encodes a 27 kDa glucosylphosphatidylinositol (GPI) anchored cell surface protein, which shows structural homology to urokinase plasminogen activator receptor (uPAR). This thesis describes the characterization and functional roles of NYD-SP8 involved in cancer development. / In summary, the present findings have demonstrated the roles of NYD-SP8 in multi-step cancer development. Further investigations of NYD-SP8 in cancer development may provide new insights and ground for potential use of CT antigens in anti-cancer therapy. (Abstract: 428 words) / In the first set of experiments, the possible role(s) and underlying mechanism(s) of NYD-SP8 in regulating cell proliferation and apoptosis were investigated. Flow cytometric analysis, cell proliferation assay and Western blot analysis showed that NYD-SP8 promoted cell proliferation and protected cells against TNFalpha-induced apoptosis in Human embryonic kidney cells (HEK293) and human hepatocellular carcinoma cells (hHCC). In vitro studies showed that NYD-SP8 enhanced anchorage-independent growth of hHCC, further suggesting the pro-survival effect of NYD-SP8. These data demonstrated important functions of NYD-SP8 in promoting cell growth and preventing apoptosis during cancer development. / In the last part of thesis, the involvement of NYD-SP8 in epithelial-mesenchymal transitions (EMTs) was demonstrated. Upon TGFbeta stimulation or TGFbeta/TNFalpha co-stimulation, the mRNA and protein expression of NYD-SP8 was decreased in LIM1863 cells. Cell adhesion assay showed that the attachment ability of hHCC-SP8 was lowered in laminin and fibronectin coated plate, suggesting the possible role of NYD-SP8 in affecting cell-matrix interaction. These data indicate that NYD-SP8 is involved in the EMTs process and may serve as potential EMTs markers during cancer development. / In the second sets of experiments, the possible role(s) and underlying mechanism(s) of NYD-SP8 in regulating cancer invasion and metastasis were investigated. The results showed that NYD-SP8 could suppress multiple "tumor associated" proteases. Overexpression of NYD-SP8 resulted in reducing activities of the three major classes of proteases known to be involved in ECM degradation, including uPA, matrix metalloproteinases (MMPs) and cathepsin B, leading to suppression of both in vitro and in vivo cancer cell invasion and metastasis. Co-immunoprecipitation experiments showed binding of NYD-SP8 to uPA/uPAR complexes and interfering with active uPA production. These data demonstrated an important function of NYD-5P8 in regulating ECM degradation, providing a novel mechanism that modulates uPA/uPAR signaling in the suppression of cancer progression. / Chung, Chin Man. / "December 2009." / Adviser: H.C. Chan. / Source: Dissertation Abstracts International, Volume: 72-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 124-150). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
353

Apoptotic effects of iodine in thyroid cancer cells. / CUHK electronic theses & dissertations collection

January 2010 (has links)
This reseach firstly investigated iodine-induced apoptotic effects and the underlying mechanism in thyroid cancer cells. Results indicated that apoptosis induced by iodine, especially at high dose of iodine (100 muM), was mitochondrial-mediated, with the loss of mitochondrial membrane potential, Bak up-regulation, caspase 3 activation and cytochrome C release from mitochondria. Iodine treatment decreased the level of mutant p53 including the R273H mutant that possesses anti-apoptotic features while increased the p21 level. The block of p21 significantly prevented iodine-induced apoptosis. High doses of iodine also stimulated the transient activation of the subfamily members of MAPKs (ERK1/2, p38 and JNK1/2). The results showed the three subfamily members of MAPKs all worked as anti-apoptotic factors. Surprisingly, high doses of iodine promoted instead of suppressed the expression of anti-apoptotic protein Bcl-xL expression. The increase of Bc1-xL was likely to compensate the damage induced by iodine since the inhibition of Bc1-xL accelerated iodine-mediated apoptosis. Collectively, iodine induced mitochondrial-mediated apoptosis in thyroid cancer cells. This apoptotic pathway was involved in the activation of MAPKs pathways, which may subsequently up-regulate p21, Bc1-xL, and down-regulate anti-apoptotic mutant p53 expression. The findings provide solid molecular evidence to explain the epidemiological observation that iodine insufficiency promotes the thyroid tumor development. It may also reveal some novel molecular targets for the treatment of thyroid cancer. / Thyroid cancer is the most common endocrine malignancy and exhibits the full range of malignant behaviors from the relatively indolent occult differentiated thyroid cancer to uniformly aggressive and lethal anaplastic thyroid cancer. Iodine is a well known key element in thyroid normal function maintenance and thyroid cancer development. However, the mechanisms of iodine in thyroid cancer cells development are limited. Recent researches have indicated that iodine could induce cancer cells apoptosis, staying clear from the dysfunction of iodide-specific transportation systems in thyroid cancer cells. Thus, iodine-induced apoptosis may be an effective pathway for iodine to affect thyroid cancer development, but we know little about them. / To further explore iodine on the apoptotic effects of chemotherapeutic agents in thyroid cancer, anaplastic thyroid cancer cell line ARO was used. Anaplastic thyroid cancer is lethal because of its rapid progression and poor response to chemotherapy and radioiodine therapy. The study examined the effect of moderate dose of iodine (50 muM) on the apoptosis of ARO cells treated with doxorubicin (Dox) and histone deacetylase inhibitor sodium butyrate (NaB). The cytotoxic effect of either Dox or NaB alone was limited, but co-administration of NaB and Dox (NaB-Dox) significantly increased mitochondrial-mediated apoptosis. The effects of iodine to apoptosis-induced by the two agents were diversified. Iodine reduced the apoptosis induced by Dox or NaB-Dox but promoted apoptosis induced by NaB. To explain this diversifying finding, the experiment found that iodine exaggerated NaB-mediated Bcl-xL down-regulation. In contrast, it reduced the effect of Dox on the decrease of Bcl-xL expression. Further experiments showed that iodine regulated the level of Bcl-xL in ERK- or/and p38-related pathways. The balance between ERK and p38 may determine the iodine-modulated Bcl-xL expression. The high ERK/p38 activity ratio up-regulated Bc1-xL and enabled the tumor cells to resist chemotherapy, whereas the low ERK/p38 down-regulated Bc1-xL and sensitized the tumor cells to chemotherapy. Taken together, iodine plays a critical role in apoptosis of thyroid cancer cells induced by chemotherapeutic agents. The balance between ERK and p38 may determine cell survival and death through modulating Bcl-xL expression in thyroid cancer cells. The findings provide some new insights into the roles of iodine in chemotherapeutic agents-induced apoptosis in thyroid cancer cells. / To summarize, iodine-induced apoptotic effects on thyroid cancer cells is a key pathway for iodine to influence thyroid cancer development and chemotherapy. Meanwhile MAPKs-related mutant p53, p21 and Bcl-xL expression are critical in deciding thyroid cancer cells survival and death. Moreover, iodine can influence chemotherapeutic agents-induced apoptosis through ERK/p38-mediated Bcl-xL expression. / Liu, Xiaohong. / "December 2009." / Adviser: Charles Andrew van Hasselt. / Source: Dissertation Abstracts International, Volume: 72-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 111-146). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
354

Cyanidin protects HK-2 proximal tubular cells against cisplatin-induced apoptosis through modulating AKT and ERK pathways.

January 2010 (has links)
Gao, Si. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 77-85). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / Abstract (in Chinese) --- p.iv / List of Abbreviations --- p.v / List of Figures --- p.vii / Table of Contents --- p.ix / Chapter Chapter One: --- Introduction --- p.1 / Chapter 1.1. --- Cancer --- p.1 / Chapter 1.2. --- Chemotherapy --- p.2 / Chapter 1.3. --- Cisplatin --- p.3 / Chapter 1.4. --- Cisplatin-induced nephrotoxicity --- p.4 / Chapter 1.5. --- Mechanisms of cisplatin-induced nephrotoxicity --- p.5 / Chapter 1.5.1. --- Apoptosis in cisplatin-induced nephrotoxicity --- p.5 / Chapter 1.5.2. --- MAPK activation in cisplatin-induced nephrotoxicity --- p.7 / Chapter 1.5.3. --- Oxidative stress in cisplatin-induced nephrotoxicity --- p.8 / Chapter 1.6. --- Polyphenols --- p.10 / Chapter 1.7. --- Anthocyanins --- p.10 / Chapter 1.8. --- Rose --- p.11 / Chapter 1.9. --- Cyanidin --- p.12 / Chapter 1.10. --- Objectives of this project --- p.13 / Chapter Chapter Two: --- Materials and Methods --- p.15 / Chapter 2.1. --- Materials --- p.15 / Chapter 2.2. --- Cell culture --- p.15 / Chapter 2.3. --- Drug treatment --- p.16 / Chapter 2.4. --- MTT assay --- p.16 / Chapter 2.5. --- Lactate dehydrogenase (LDH) assay --- p.16 / Chapter 2.6. --- TUNEL assay and DAPI staining --- p.17 / Chapter 2.7. --- Flow cytometric analysis --- p.17 / Chapter 2.8. --- Determination of caspase-3 activity --- p.18 / Chapter 2.9. --- Measurement of ROS generation --- p.18 / Chapter 2.10. --- Evaluation of mitochondrial membrane potential --- p.19 / Chapter 2.11. --- Single Cell Gel Electrophoresis (Comet Assay) --- p.19 / Chapter 2.12. --- Western blot analysis --- p.20 / Chapter 2.13. --- Statistical analysis --- p.21 / Chapter Chapter Three: --- Results --- p.22 / Chapter 3.1. --- Cyanidin attenuates cisplatin-induced cytotoxicity in HK-2 cells --- p.22 / Chapter 3.1.1. --- Cytotoxicity induces by cisplatin in HK-2 cells --- p.22 / Chapter 3.1.2. --- Rose extract attenuates cisplatin-induced cytotoxicity and LDH leakage --- p.26 / Chapter 3.1.3. --- Cyanidin attenuates cisplatin-induced cytotoxicity and LDH leakage --- p.26 / Chapter 3.1.4. --- Cyanidin did not affect cisplatin-induced cytotoxicity in Hela cell --- p.30 / Chapter 3.2. --- Cyanidin rescues HK-2 cells from cisplatin-induced apoptosis --- p.31 / Chapter 3.2.1. --- Cisplatin induces cell apoptosis in HK-2 cells --- p.31 / Chapter 3.2.2. --- Rose extract rescues HK-2 cells from cisplatin-induced apoptosis --- p.31 / Chapter 3.2.3. --- Cyanidin rescues HK-2 cells from cisplatin-induced apoptosis --- p.32 / Chapter 3.3. --- Cyanidin suppresses cisplatin-induced activation of caspase and cleavage of PARP --- p.38 / Chapter 3.3.1. --- Cisplatin induces activation of caspase-3 --- p.38 / Chapter 3.3.2. --- Rose extract suppresses cisplatin-induced activation of caspase-3 --- p.38 / Chapter 3.3.3. --- Cyanidin suppresses cisplatin-induced activation of caspase-3 --- p.38 / Chapter 3.3.4. --- Rose extract suppresses cisplatin-induced caspase activation and PARP cleavage --- p.41 / Chapter 3.3.5. --- Cyanidin suppresses cisplatin-induced caspase activation and PARP cleavage --- p.43 / Chapter 3.4. --- Cyanidin rescues HK-2 cells from cisplatin-induced mitochondrial dysfuntion by regulating the expression of Bcl-2 family proteins --- p.43 / Chapter 3.4.1. --- Cyanidin prevents cisplatin-induced loss of mitochondrial membrane potential (A^m) --- p.43 / Chapter 3.4.2. --- Cyanidin regulates the expression of Bcl-2 family proteins to prevent cisplatin-induced mitochondrial dysfunction --- p.44 / Chapter 3.5. --- Cyanidin reduces cisplatin-induced apoptosis by suppressing the activation of p53 --- p.46 / Chapter 3.6. --- Cyanidin inhibits ROS-mediated DNA damage in HK-2 cells --- p.48 / Chapter 3.6.1. --- Cyanidin prevents cisplatin-induced DNA damage --- p.48 / Chapter 3.6.2. --- Cyanidin inhibits cisplatin-induced accumulation of ROS --- p.48 / Chapter 3.7. --- "Cyanidin suppresses cisplatin-induced apoptosis by activation of AKT, JNK and ERK" --- p.52 / Chapter 3.7.1. --- Cisplatin activates ERK and AKT pathways --- p.52 / Chapter 3.7.2. --- Cyanidin suppresses cisplatin-induced activation of MAPKs and AKT pathways --- p.52 / Chapter 3.7.3. --- AKT and ERK Inhibitors attenuates cisplatin-induced apoptosis in HK-2 cells --- p.53 / Chapter Chapter Four: --- Discussion --- p.60 / Chapter 4.1. --- Cell model and cisplatin treatment --- p.60 / Chapter 4.2. --- Cisplatin nephrotoxicity and its renoprevention --- p.61 / Chapter 4.3. --- Rose extract prevents cisplatin-induced apoptosis in HK-2 cells --- p.62 / Chapter 4.3.1. --- Rose extract prevents cisplatin-induced apoptosis in HK-2 cells --- p.63 / Chapter 4.3.2. --- Rose extract inhibits cisplatin-induced caspase activation and PARP cleavage --- p.64 / Chapter 4.4. --- Cyanidin prevents cisplatin-induced apoptosis in HK-2 cells --- p.66 / Chapter 4.4.1. --- Cyanidin will not affect cisplatin-induced cell death in HeLa cells --- p.66 / Chapter 4.4.2. --- Cyanidin prevents cisplatin-induced apoptosis by inhibiting caspase activation and PARP cleavage in HK-2 cells --- p.66 / Chapter 4.4.3. --- Cyanidin prevents the cisplatin-induced loss of mitochondrial membrane potential by regulating Bcl-2 proteins in HK-2 cells --- p.67 / Chapter 4.4.4. --- Cyanidin suppresses cisplatin-induced total and phosphorylated p53 activation --- p.68 / Chapter 4.4.5. --- Cyanidin prevents the cisplatin-induced overproduction of intracellular ROS and subsequent DNA damage in HK-2 cells --- p.69 / Chapter 4.4.6. --- Cyanidin suppresses the cisplatin-induced activation of MAPKs and AKT pathways in HK-2 cells --- p.71 / Chapter Chapter Five: --- Conclusion --- p.74 / References --- p.77
355

Studies on the anti-tumour activities of banlangen alkaloids on murine neuroblastoma cells.

January 2010 (has links)
Yip, Hon Yan Kelvin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 218-242). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABBREVIATIONS --- p.ii / ABSTRACT --- p.vii / CHINESE ABSTRACT (摘要) --- p.xi / PUBLICATIONS --- p.xiv / TABLE OF CONTENTS --- p.xv / Chapter CHAPTER 1: --- GENERAL INTRODUCTION --- p.1 / Chapter 1.1 --- Neuroblastoma --- p.2 / Chapter 1.1.1 --- An overview of neuroblastoma --- p.2 / Chapter 1.1.2 --- Epidemiology of neuroblastoma --- p.3 / Chapter 1.1.3 --- Clinical presentations of neuroblastoma --- p.5 / Chapter 1.1.4 --- Diagnosis and clinical assessment of neuroblastoma --- p.8 / Chapter 1.1.5 --- Staging of neuroblastoma --- p.10 / Chapter 1.1.6 --- Genetic aberrations of neuroblastoma --- p.12 / Chapter 1.1.7 --- Therapies of neuroblastoma --- p.15 / Chapter 1.2 --- Banlangen alkaloids --- p.20 / Chapter 1.2.1 --- An overview of Banlangen alkaloids --- p.20 / Chapter 1.2.2 --- "Pharmacokinetics of indirubin, tryptanthrin and their derivatives" --- p.24 / Chapter 1.2.2.1 --- Bioavailability of indirubin and its derivatives --- p.24 / Chapter 1.2.2.2 --- Toxicity of indirubin and its derivatives --- p.25 / Chapter 1.2.2.3 --- Bioavailability of tryptanthrin --- p.26 / Chapter 1.2.2.4 --- Toxicity of tryptanthrin --- p.27 / Chapter 1.2.3 --- "Pharmacological effects of indirubin, tryptanthrin and their derivatives" --- p.28 / Chapter 1.2.3.1 --- Selective inhibitor on kinases --- p.29 / Chapter 1.2.3.2 --- Anti-inflammatory activities --- p.31 / Chapter 1.2.3.3 --- Anti-tumour activities --- p.32 / Chapter 1.2.3.3.1 --- Anti-leukemic activity --- p.32 / Chapter 1.2.3.3.2 --- Apoptosis-inducing activity --- p.34 / Chapter 1.2.3.4 --- Anti-viral properties --- p.37 / Chapter 1.2.3.5 --- Anti-microbial properties --- p.37 / Chapter 1.3 --- Aims and Scope of This Study --- p.39 / Chapter CHAPTER 2: --- MATERIALS AND METHODS --- p.41 / Chapter 2.1 --- Materials --- p.42 / Chapter 2.1.1 --- Cell lines --- p.42 / Chapter 2.1.2 --- "Cell culture media, reagents and buffers" --- p.43 / Chapter 2.1.3 --- General staining solutions --- p.46 / Chapter 2.1.4 --- Drugs and chemicals --- p.47 / Chapter 2.1.5 --- Reagent for primary cultures preparation --- p.48 / Chapter 2.1.6 --- Reagents for cell proliferation assay --- p.48 / Chapter 2.1.7 --- Reagents for DNA extraction --- p.50 / Chapter 2.1.8 --- Reagents for gel electrophoresis of nucleic acids --- p.51 / Chapter 2.1.9 --- Reagents and buffers for flow cytometry --- p.53 / Chapter 2.1.10 --- Reagents and buffers for measuring caspase activity --- p.54 / Chapter 2.1.11 --- "Reagents, buffers and materials for Western blot analysis" --- p.58 / Chapter 2.1.12 --- Reagent for Hoechst staining --- p.68 / Chapter 2.2 --- Methods --- p.69 / Chapter 2.2.1 --- Culture of cell lines --- p.69 / Chapter 2.2.2 --- Determination of cell viability --- p.70 / Chapter 2.2.3 --- Determination of cell proliferation by tritiated thymidine ([ 3H]-TdR) incorporation assay --- p.72 / Chapter 2.2.4 --- "Isolation, culture and cytotoxicity test of murine peritoneal macrophages" --- p.73 / Chapter 2.2.5 --- "Isolation, culture and cytotoxicity test of murine bone marrow cells" --- p.74 / Chapter 2.2.6 --- Cytotoxicity test of primary cortical neurons from SD rats --- p.75 / Chapter 2.2.7 --- Determination of colony forming ability --- p.75 / Chapter 2.2.8 --- Analysis of cell cycle profile /DNA content by flow cytometry --- p.76 / Chapter 2.2.9 --- Detection of DNA fragmentation by agarose gel electrophoresis --- p.77 / Chapter 2.2.10 --- Quantitative detection of DNA fragmentation by Cell Death ELISAplus kit --- p.78 / Chapter 2.2.11 --- Detection of intracellular reactive oxygen species (ROS) generation --- p.80 / Chapter 2.2.12 --- Measurement of caspase activity --- p.81 / Chapter 2.2.13 --- Hoechst 33342 staining --- p.83 / Chapter 2.2.14 --- Cell morphological study --- p.83 / Chapter 2.2.15 --- Analysis of morphological changes by flow cytometry --- p.84 / Chapter 2.2.16 --- Assay for acetylcholine esterase (AChE) activity --- p.85 / Chapter 2.2.17 --- Protein expression study --- p.86 / Chapter 2.2.18 --- Statistical analysis --- p.89 / Chapter CHAPTER 3: --- IN VITRO STUDIES ON THE ANTI PROLIFERATIVE EFFECT OF INDIRUBIN-3'-OXIME AND TRYPTANTHRIN ON NEUROBLASTOMA CELLS --- p.90 / Chapter 3.1 --- Introduction --- p.91 / Chapter 3.2 --- Results --- p.95 / Chapter 3.2.1 --- Effects of indirubin-3'-oxime and tryptanthrin on the proliferation of human and the murine neuroblastoma cells --- p.95 / Chapter 3.2.2 --- Kinetic and reversibility studies of the anti-proliferative effect of indirubin-3'-oxime and tryptanthrin on the murine neuroblastoma Neuro-2a BU-1 cells --- p.107 / Chapter 3.2.3 --- Cytotoxic effect of indirubin-3'-oxime and tryptanthrin on the murine neuroblastoma Neuro-2a BU-1 cells --- p.115 / Chapter 3.2.4 --- Effects of indirubin-3'-oxime and tryptanthrin on the clonogenicity of the murine neuroblastoma Neuro-2a BU-1 cells --- p.120 / Chapter 3.2.5 --- Cytotoxicity of indirubin-3'-oxime and tryptanthrin on primary cells --- p.123 / Chapter 3.2.6 --- Effects of tryptanthrin on the cell cycle profile and expression of cyclins and cyclin-dependent kinases (CDKs) in the murine neuroblastoma Neuro-2a BU-1 cells --- p.132 / Chapter 3.2.7 --- Effect of indirubin-3'-oxime on the cell cycle profile in the murine neuroblastoma Neuro-2a BU-1 cells --- p.133 / Chapter 3.3 --- Discussion --- p.142 / Chapter CHAPTER 4: --- IN VITRO STUDIES ON THE APOPTOSIS-INDUCING EFFECT OF INDIRUBIN-3'-OXIME ON NEUROBLASTOMA CELLS --- p.150 / Chapter 4.1 --- Introduction --- p.151 / Chapter 4.2 --- Results --- p.156 / Chapter 4.2.1 --- Induction of DNA fragmentation in the indirubin-3'-oxime-treated murine neuroblastoma Neuro-2a BU-1 cells --- p.156 / Chapter 4.2.2 --- Induction of chromatin condensation in the indirubin-3 '-oxime-treated murine neuroblastoma Neuro-2a BU-1 cells --- p.160 / Chapter 4.2.3 --- Induction of caspase activities in the indirubin-3 '-oxime-treated murine neuroblastoma Neuro-2a BU-1 cells --- p.162 / Chapter 4.2.4 --- Induction of Reactive Oxygen Species (ROS) in the indirubin-3' -oxime-treated murine neuroblastoma Neuro-2a BU-1 cells --- p.169 / Chapter 4.2.5 --- Expression of pro-apoptotic and anti-apoptotic proteins in the indirubin-3 '-oxime-treated murine neuroblastoma Neuro-2a BU-1 cells --- p.173 / Chapter 4.3 --- Discussion --- p.177 / Chapter CHAPTER 5: --- STUDIES ON THE DIFFERENTIATION-INDUCING ACTIVITY OF TRYPTANTHRIN ON NEUROBLASTOMA CELLS --- p.188 / Chapter 5.1 --- Introduction --- p.189 / Chapter 5.2 --- Results --- p.193 / Chapter 5.2.1 --- Effects of tryptanthrin on the cell size and cellular complexity of the murine neuroblastoma Neuro-2a BU-1 cells --- p.193 / Chapter 5.2.2 --- Morphological studies on tryptanthrin-treated murine neuroblastoma Neuro-2a BU-1 cells --- p.196 / Chapter 5.2.3 --- Effect of tryptanthrin on the acetylcholine esterase (AChE) activity in the murine neuroblastoma Neuro-2a BU-1 cells --- p.198 / Chapter 5.2.4 --- Effects of tryptanthrin on the expression of tau protein and other mediators involved in the differentiation pathway --- p.200 / Chapter 5.3 --- Discussion --- p.204 / Chapter CHAPTER 6: --- CONCLUSIONS AND FUTURE PERSPECTIVES --- p.209 / REFERENCES --- p.218
356

Selenocystine-induced apoptosis in human leukemia Sup-T₁ cells.

January 2010 (has links)
Wong, Wing Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 90-105). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / Abstract (Chinese Version) --- p.v / Table of Contents --- p.vi / List of Figures --- p.ix / List of Abbreviations --- p.xi / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Overview of cancer --- p.1 / Chapter 1.2 --- Acute lymphoblastic leukemia --- p.3 / Chapter 1.2.1 --- T-cell acute lymphoblastic leukemia --- p.5 / Chapter 1.2.1.1 --- Chemotherapy / Chapter 1.2.1.2 --- Induction therapy / Chapter 1.2.1.3 --- Intensification therapy / Chapter 1.2.1.4 --- Maintenance therapy --- p.6 / Chapter 1.2.2 --- Chemoresistance in T-ALL / Chapter 1.3 --- Apoptosis and cancer --- p.7 / Chapter 1.3.1 --- Chemoresistance --- p.9 / Chapter 1.4 --- Caspase-dependent apoptosis --- p.10 / Chapter 1.4.1 --- Regulation of caspase-dependent apoptosis / Chapter 1.4.2 --- Initiation of apoptosis --- p.11 / Chapter 1.4.3 --- Exrtinsic pathway / Chapter 1.4.4 --- Intrinsic mitochondrial pathway --- p.15 / Chapter 1.4.4.1 --- Regulation of apoptosis by Bcl-2 family proteins --- p.16 / Chapter 1.4.4.2 --- Reactive Oxygen Species --- p.19 / Chapter 1.5 --- Selenium --- p.23 / Chapter 1.5.1 --- Importance of Se to human health --- p.25 / Chapter 1.5.2 --- Cancer chemoprevention by Se --- p.27 / Chapter 1.5.3 --- Preclinical studies --- p.28 / Chapter 1.5.4 --- Clinical investigations / Chapter 1.5.5 --- Mechanisms of action by selenocompounds --- p.29 / Chapter 1.6 --- Aims of current study --- p.31 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Cell culture --- p.32 / Chapter 2.2 --- Measurement of growth and survival of T-ALL cell lines / Chapter 2.3 --- Induction and quantification of apoptosis --- p.34 / Chapter 2.4 --- Western blotting / Chapter 2.4.1 --- Protein extraction and determination of protein concentration / Chapter 2.4.2 --- SDS-PAGE and immunodetection --- p.35 / Chapter 2.5 --- Analysis of mitochondrial membrane potential --- p.36 / Chapter 2.6 --- Measurement of ROS generation --- p.37 / Chapter 2.7 --- Verification of ROS generation via the addition of N-Acetyl-L-cysteine and glutathione / Chapter 2.8 --- Statistical analysis --- p.38 / Chapter Chapter 3 --- Results / Chapter 3.1 --- SeC induces prominent growth inhibition on Sup-T1 --- p.39 / Chapter 3.2 --- SeC induces S-phase arrest in cell cycle and triggers apoptosis in Sup-T1 --- p.44 / Chapter 3.3 --- SeC triggers DNA fragmentation in Sup-T1 --- p.48 / Chapter 3.4 --- SeC induces PARP cleavage in Sup-T1 --- p.52 / Chapter 3.5 --- SeC activates caspases in Sup-T1 --- p.53 / Chapter 3.6 --- SeC abrogates mitochondrial membrane potential in Sup-T1 cells --- p.56 / Chapter 3.7 --- SeC modulates expressions of Bcl-2 members and activates Bim and Bid in Sup-T1 --- p.61 / Chapter 3.8 --- SeC induces ROS production in Sup-T1 --- p.64 / Chapter 3.9 --- Antioxidants protect Sup-T1 cells from SeC-induced growth inhibition --- p.66 / Chapter 3.10 --- Antioxidants protect Sup-T1 cells from SeC-induced apoptosis --- p.69 / Chapter 3.11 --- Antioxidants effectively block SeC-induced ROS generation in Sup-T1 cells --- p.72 / Chapter 3.12 --- SeC induces mitochondrial membrane permeabilization via ROS-mediated mechanisms Sup-T1 cells --- p.75 / Chapter Chapter 4 --- Discussion --- p.79 / Conclusion --- p.87 / References --- p.90
357

In vitro and in vivo study of effects of sinigrin on liver.

January 2006 (has links)
Meng Jie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Table of Contents --- p.vi / Abbreviation --- p.x / List of Figures --- p.xi / List of Tables --- p.xiii / Chapter Chapter 1: --- Introduction --- p.1 / Chapter 1.1 --- Black Mustard and Sinigrin --- p.2 / Chapter 1.2 --- Hepatocellular Carcinoma --- p.5 / Chapter 1.2.1 --- Different Stages of HCC --- p.6 / Chapter 1.2.2 --- Risk Factors --- p.8 / Chapter 1.2.3 --- Treatments of HCC --- p.10 / Chapter 1.3 --- Biomarkers Used to Evaluate Effects of Sinigrin on HCC --- p.12 / Chapter 1.3.1 --- AST & ALT --- p.12 / Chapter 1.3.2 --- Glutathione S Transferase -p (GST-p) --- p.13 / Chapter 1.4 --- Tumor Suppressor Genes and Oncogenes --- p.14 / Chapter 1.4.1 --- "p53, the Tumor Suppressor Gene" --- p.15 / Chapter 1.4.2 --- p53-dependent pathway --- p.15 / Chapter 1.4.2.1 --- Mdm2 --- p.16 / Chapter 1.4.2.2 --- Bax and Bcl-2 --- p.17 / Chapter 1.4.2.3 --- PCNA and p21wAF1/CIP1 --- p.18 / Chapter 1.5 --- Aim of the Project --- p.19 / Chapter Chapter 2: --- Materials and Methods --- p.20 / Chapter 2.1 --- In vitro Studies --- p.21 / Chapter 2.1.1 --- Neutral Red Assay --- p.21 / Chapter 2.1.1.1 --- Chemicals and Reagents --- p.21 / Chapter 2.1.1.2 --- Liver Cells --- p.23 / Chapter 2.1.1.3 --- Neutral Red Assay --- p.24 / Chapter 2.1.2 --- Flow Cytometery --- p.24 / Chapter 2.1.2.1 --- Chemicals and Reagents --- p.25 / Chapter 2.1.2.2 --- Flow Cytometery Analysis --- p.25 / Chapter 2.1.3 --- DNA Fragmentation --- p.26 / Chapter 2.1.3.1 --- Chemicals and Reagents --- p.26 / Chapter 2.1.3.2 --- DNA Extraction --- p.28 / Chapter 2.1.3.3 --- DNA Agarose Gel Electrophoresis --- p.29 / Chapter 2.1.4 --- cDNA Microarray --- p.29 / Chapter 2.1.4.1 --- Chemicals and Reagents --- p.30 / Chapter 2.1.4.2 --- RNA Extraction --- p.33 / Chapter 2.1.4.3 --- RNA Quantity and Quality Control --- p.34 / Chapter 2.1.4.4 --- RT-PCR --- p.35 / Chapter 2.1.4.5 --- cRNA Convention and Purification --- p.36 / Chapter 2.1.4.6 --- Hybridization --- p.37 / Chapter 2.1.4.7 --- Washing and Detection --- p.37 / Chapter 2.1.4.8 --- Data Analysis --- p.38 / Chapter 2.2 --- In vivo Studies --- p.39 / Chapter 2.2.1 --- Animal Treatment --- p.39 / Chapter 2.2.1.1 --- Chemicals and Reagents --- p.39 / Chapter 2.2.1.2 --- Chemical Carcinogens --- p.40 / Chapter 2.2.1.3 --- Promotion Stage --- p.41 / Chapter 2.2.1.4 --- Progression Stage --- p.44 / Chapter 2.2.2 --- Measurement of Serum ALT and AST Activities --- p.46 / Chapter 2.2.2.1 --- Chemicals and Reagents --- p.46 / Chapter 2.2.2.2 --- Activity Assay --- p.46 / Chapter 2.2.3 --- Histological Analysis --- p.47 / Chapter 2.2.3.1 --- Chemicals and Reagents --- p.47 / Chapter 2.2.3.2 --- Preparation of Slides --- p.49 / Chapter 2.2.3.3 --- H&E Staining --- p.49 / Chapter 2.2.3.4 --- GST-p Immuno-staining --- p.50 / Chapter 2.2.4 --- Semi-Quantitative RT-PCR Analysis of mRNA Expression --- p.53 / Chapter 2.2.4.1 --- Chemicals and Reagents --- p.53 / Chapter 2.2.4.2 --- Extraction of total RNA from rat liver --- p.53 / Chapter 2.2.4.3 --- Quantity and Quality Control of RNA --- p.53 / Chapter 2.2.4.4 --- RT-PCR (Reverse Transcription) --- p.54 / Chapter 2.2.4.5 --- PCR --- p.54 / Chapter 2.2.4.6 --- DNA gel electrophoresis --- p.55 / Chapter 2.2.4.7 --- Data Analysis --- p.56 / Chapter 2.2.5 --- Western Blot Analysis for Biomarkers --- p.56 / Chapter 2.2.5.1 --- Chemicals and Reagents --- p.56 / Chapter 2.2.5.2 --- Extraction of the Cytosol Protein --- p.60 / Chapter 2.2.5.3 --- Extraction of the Nuclear protein --- p.61 / Chapter 2.2.5.4 --- SDS Gel Electrophoresis --- p.61 / Chapter 2.2.5.5 --- Western Blot --- p.62 / Chapter 2.2.5.6 --- Interaction with Antibodies --- p.63 / Chapter 2.2.5.7 --- ECL Detection --- p.63 / Chapter 2.2.5.8 --- Data Analysis --- p.64 / Chapter Chapter 3: --- Results --- p.65 / Chapter 3.1 --- In vitro Studies --- p.66 / Chapter 3.1.1 --- Cell Viability test and IC50 --- p.66 / Chapter 3.1.2 --- Cell Cycle Analysis --- p.68 / Chapter 3.1.3 --- DNA Fragmentation --- p.71 / Chapter 3.1.4 --- Effects of Sinigrin on Gene Expression --- p.73 / Chapter 3.2 --- In vivo Studies --- p.77 / Chapter 3.2.1 --- Effects of Sinigrin on HCC Development (Promotion stage) in Rats --- p.77 / Chapter 3.2.1.1 --- Direct Observation --- p.77 / Chapter 3.2.1.2 --- Relative Liver / Body Weight Ratio --- p.79 / Chapter 3.2.1.3 --- AST/ALT Assay --- p.81 / Chapter 3.2.1.4 --- Basic Structure of Hepatocytes --- p.83 / Chapter 3.2.1.5 --- GST-p Foci Area --- p.85 / Chapter 3.2.1.6 --- mRNA Expression of p53 and Mdm2 --- p.88 / Chapter 3.2.1.7 --- Protein Expression of Biomarkers --- p.90 / Chapter 3.2.2 --- Effects of Sinigrin on HCC Development (Progression stage) in Rats --- p.97 / Chapter 3.2.2.1 --- Direct Observation --- p.97 / Chapter 3.2.2.2 --- Relative Liver / Body Weight Ratio --- p.99 / Chapter 3.2.2.3 --- AST/ALT Assay --- p.101 / Chapter 3.2.2.4 --- Basic Structure of Hepatocytes --- p.103 / Chapter 3.2.2.5 --- GST-p Foci Area --- p.105 / Chapter 3.2.2.6 --- mRNA Expression of p53 and Mdm2 --- p.108 / Chapter 3.2.2.7 --- Protein Expression of Biomarkers --- p.110 / Chapter Chapter 4: --- Discussion --- p.116 / Chapter 4.1 --- Protective and Therapeutic Benefits of Sinigrin --- p.117 / Chapter 4.1.1 --- Effects of SIN on Cancer and Normal Cells --- p.117 / Chapter 4.1.2 --- Effective Tumor Induction by DEN-CC14 Treatment --- p.118 / Chapter 4.1.3 --- Protective Effect of SIN in the Promotion Stage of HCC --- p.118 / Chapter 4.1.4 --- Therapeutic Effect of SIN in the Progression Stage of HCC --- p.119 / Chapter 4.2 --- Biological Activities of SIN --- p.121 / Chapter 4.3 --- Summary --- p.134 / References --- p.xiv
358

BODIPY-encapsulated silica nanoparticles for photodynamic therapy / CUHK electronic theses & dissertations collection

January 2015 (has links)
Photodynamic therapy (PDT) is a minimally invasive treatment modality for some human diseases, including cancer. To destroy the targeted cells or tissues, PDT relies on the reactive oxygen species (ROS) generated from a series of photochemical reactions by the light-activated photosensitizers administered to the patients. Many dyes could be modified to become photosensitizers. The BODIPY-based fluorophores could be converted into potent photosensitizers with highly efficient singlet oxygen generation as well as considerable brightness of fluorescence. Some of them exhibit potent in vitro PDT effects. However, carriers are often required for an effective delivery of the BODIPY-based dyes in biological system. / Silica nanoparticles are ceramic-based materials prepared by condensation of silanes along the surfactant-based templating agents. Mesoporous silica nanoparticles (MSNs) and organically modified silica nanoparticles (OMSNs) represent two major types of silica nanocarriers used for loading of photosensitizers in PDT. Typical MSNs have a diameter of 100-500 nm and a highly ordered hexagonal porous structure for loading of guest molecules. The OMSNs are smaller in size (diameter ~20 nm). Both MSNs and OMSNs are known to be chemically inert and biocompatible. Therefore, they were selected as the carriers for BODIPY-based photosensitizers in the present study. / A BODIPY-based photosensitizer with an absorption maximum at the red region (~660 nm) was modified to carry a carboxyl group at the meso-position. This photosensitizer was conjugated to an amine-functionalized MSN of diameter 80-120 nm by a post-synthesis grafting approach. This strategy allowed the entrapment of delicate dyes by the MSN under mild reaction conditions. The resulting composites with different photosensitizer loading were all spherical and with diameter from 80-120 nm. Dispersing the composites in H₂O, the fluorescence emission was moderately quenched due to dye aggregation. However, compared with the surfactant solubilized free dye, the MSN conjugated BODIPY produced singlet oxygen more efficiently. The dye loading per the unit mass of MSN did not impose any significant effect on the photophysical properties of the composites. The in vitro PDT effects of the BODIPY-based dye entrapped in the MSN were evaluated by using the human adenocarcinoma cells HT-29. The dyes loaded in the MSNs were more cytotoxic than the free dye, but slightly less cytotoxic when compared with the surfactant-formulated dye. The rate of intracellular ROS production of the MSN entrapped dye was much higher than that of the free dye with or without surfactant, which was consistent with the results obtained in the studies of the photophysical properties. The dye in MSN was more efficient as an inducer of apoptosis than the dye in surfactant, as shown by the annexin V/PI staining. Subcellular localization studies using confocal microscopy revealed that the dye in MSN was mainly found in endoplasmic reticulum and lysosome of the cells. / This amine-functionalized MSN platform was further modified on the surface. On a batch of amine-bearing MSN (~200 nm in diameter) loaded with the BODIPY-based photosensitizer, a layer of polyethylene glycol (PEG) was grafted. The PEG layer was comprised of short PEG chains (~15 repeating units) with a methyl end and another long PEG chains (~44 repeating units) with an azide end. The alkyne-modified tLyP-1 peptide targets the cancer cell and blood vessel surface marker, neuropilin, was conjugated to the MSN via azide-alkyne Huisgen cycloaddition (click reaction). Unlike many other reported designs of photosensitizer-MSN composites utilizing only amine functionalization, this approach prevented the competition for conjugation site between the photosensitizer and the targeting ligand. The use of click reaction allowed a greater feasibility in targeting ligand design. In H₂O, the surface decorated composites could still generate singlet oxygen as effectively as the bare composite. The in vitro PDT effects toward human prostate adenocarcinoma cells PC-3 with a high level of neuropilin expression of the composites were evaluated. The peptide-bearing MSN had a faster initial uptake in cells, which could be moderately suppressed by the addition of free peptide. The peptide-linked MSN had a higher photocytotoxicity toward the PC-3 cells when compared with the MSN without the peptide due to the enhanced cellular uptake. Both composites were confined to the lysosome of the cells, which might be the consequence of lacking surface positive charge to help endosomal escape. Therefore, further optimization of the composite by adjusting the PEG loading, chain length and the amount of targeting ligand loading should be made. / OMSNs are homogenous spherical particles with a smaller size (~20 nm). The capability of OMSNs to be multi-functional dye nanocarriers was also explored. Besides a BODIPY-based photosensitizer, a phthalocyanine-based photosensitizer and an aza-BODIPY-based imaging dye were also chosen for OMSN entrapment. It was found that only those surfactant-soluble dyes could be successfully entrapped in the OMSNs. Dyes in OMSNs remained non-aggregated, thus emitting a bright fluorescence. The photosensitizers generated singlet oxygen with the same efficiency as the surfactant-formulated free dyes. The potency of the OMSN-entrapped photosensitizers toward the HeLa derived KB cells was similar to that of the surfactant-solubilized free dyes. OMSNs are hence alternative carrier to the surfactant-based emulsifiers for in vitro photosensitizer delivery. To decorate the surface of OMSN, folate was conjugated to the composite by one-pot approach. However, the resulting composite failed to exhibit any tumor targeting effect toward KB cells having a high level of folate receptor expression. Besides, in order to prevent premature dye leakage in culture media as a result of the interaction with serum proteins, an attempt was also made to prepare OMSNs with a covalently linked BODIPY-based dye. However, the conjugated dye was aggregated, which diminished the singlet oxygen generation and quenched the fluorescence of the composites, although the surface of this composite was successfully decorated with PEG or the azide-bearing silane. / In conclusion, the BODIPY-based photosensitizers could be entrapped in MSNs and OMSNs could be successfully delivered into cancer cells in vitro. The PDT effects induced by these composites were often comparable to those caused by the the surfactant-solubilized dyes. Although surface decorations could be made for the particles, further fine adjustment on the surface properties of the composites is needed to improve the specificity and potency of the composites in the future. / 光動力治療(PDT)可用作治療一些人類疾病如癌症。這種低創傷度治療模式的主要原理是先把光敏劑注入病人體內,然後以光照射患處,激活當中的光敏劑。經過一系列的光化學反應後,病患組織附近的氧分子會被光敏劑轉化成為活性氧物種,從而破壞病變的組織或細胞。在眾多可改造成光敏劑的染色劑中,氟硼二吡咯(BODIPY)熒光團可以轉成兼具高活性氧轉化率及強熒光的光敏劑。研究顯示,部份BODIPY衍生的光敏劑在細胞實驗中有強大的PDT效果。可是,這些光敏劑往往需要由載體輔助才可以送達目標組織或細胞。 / 二氧化矽納米粒子是由硅烷在介面活性劑模板上聚合而成的陶瓷基類納米粒子,其中介孔二氧化矽納米粒子(MSN)和有機改造二氧化矽納米粒子(OMSN)為兩種最常用的光敏劑載體。MSN的直徑通常介乎100至500納米,並有高度整齊排列的六角介孔以供承載客分子。OMSN則比較細小,直徑約20納米。MSN和OMSN皆為化學惰性以及生物相容的物料,所以在本研究中它們被選為BODIPY類光敏劑的載體。 / 在一個BODIPY光敏劑(它的吸收峰位於紅光,波長約660納米範圍內)上,羧基被加到中央位置上。這個帶羧基的光敏劑可以嫁接到己成形的帶胺功能團MSN上。由於後合成嫁接法可以於溫和的條件下進行,相信其亦可應用其他脆弱的染色劑及帶胺MSN的連結上。即使有不同光敏劑載入量,同一系列的合成物的直徑皆是80至120納米。當這些合成物分散在水中,MSN內光敏劑會因聚合作用,其熒光強度會明顯減弱。可是,比起沒有載體或以介面活性劑配方的光敏劑,包裹於MSN內的光敏劑能更有效的產生活性氧。在光物理的測試中,光敏劑的承載量對MSN化合物的光物理性質俱沒有明顯的影響。 / 對人工培植的人類大腸腺癌細胞HT-29而言,承載於MSN內的光敏劑的比沒有載體的具光毒性。可是對比起以介面活性劑配方的BODIPY,承載於MSN內的光敏劑還是光毒性稍弱。另外,承載於MSN內的光敏劑在細胞內產生活性氧的效率,遠高於介面活性劑配方內、或沒有載體的光敏劑,這項發現跟光物理的檢測結果類近。另外,annexin v/PI染色實驗結果顯示,MSN承載的光敏劑能更有效的引發細胞淍亡。共焦顯微鏡進行的細胞內定位法顯示,MSN承載的光敏劑主要分佈在內質網和溶酶體之中。 / 這類帶胺官能團的MSN的粒子表面可作進一步修飾。本研究嘗試用聚乙二醇層修飾一種直徑約200納米、以及載有BODIPY光敏劑的MSN。該聚乙二醇層由帶甲基端的短鏈(約15個重複單位)和帶疊氮端的長鏈(約44個重複單位)PEG組成。然後,以疊氮──炔烴Huisgen環加成法(點擊反應)將帶炔烴的tLyP-1短肽連接到PEG上。該tLYP-1短肽對在一些癌細胞和癌組織血管上常見的neuropilin有高度結合親和力,故可作靶向分子使用。另外,本研究裏採用的嫁接方法跟現時常用於只有胺官能團的MSN處理法不同:光敏劑和靶向份子是分別連接於MSN的胺和疊氮官能團上,故能避免光敏劑與靶向分子競爭。同時因為使用簡易的點擊化學反應,靶向分子的設計可以有更多選擇。 / 在水中,有和沒有表面修飾的MSN同樣有效地產生活性氧。對人工培植、並在細胞表面高度表達neuropilin的人類前列腺癌細胞PC-3而言,帶tLyP-1的MSN合成物有更高光毒性,其中的原因包括帶tLyP-1的MSN有更快的攝入初速。另外,自由的tLyP-1短肽可稍為抑制這種MSN合成物的細胞吸收,亦可見tLyP-1足以影響MSN的細胞攝入。可是,不論有沒有帶短肽,兩種以PEG修飾的MSN皆是因為沒有表面電荷而無法逃離細胞的溶酶體,以致其PDT效果改善幅度有限。所以在往後的研究,PEG的覆蓋量、長度和靶向分子的接連率需作進一步探討。 / OMSN是直徑約20納米均勻的圓形粒子。本研究亦會探討如何可以用OMSN作為多功能的染色劑載體。除了BODIPY光敏劑之外,另一個鋅酞菁和一個氮雜氟硼二吡咯的熒光顯影劑亦包裹在OMSN中。結果顯示,只有可以用介面活性劑溶解的染色劑才可以成功包進OMSN之內。OMSN內的染色劑基本上沒有聚合現象,故能發出強熒光,而包覆在光敏劑之內的光敏劑轉化氧作活性氧的效率跟介面活性劑配方的光敏劑一樣。 / 不論是鋅酞菁或BODIPY,包裹在OMSN內的光敏劑對在人工培植、及源自HeLa的KB癌細胞的PDT效果跟介面活性劑配方的光敏劑相若。因此,OMSN可替代活性介面劑作為光敏劑的載體。本研究亦嘗試在OMSN的表面上以葉酸作修飾。可是,即使用了表面上有大量的葉酸受體的KB細胞,葉酸修飾過的OMSN並沒有靶向性。另外,為了解決OMSN內吸附的染色劑會因粒子與血清蛋白的互動而漏出粒子外的問題,本研究亦嘗試將OMSN與BODIPY衍生的光敏劑以共價鍵連結。同時其表面亦以帶疊氮聚乙二醇層作修飾。可是,BODIPY光敏劑在以這些OMSN合成物內有嚴重的聚合現象,以致於活性氧產生和熒光亮度大幅度減弱。 / 總括來說,本研究內設計的BODIPY衍生的光敏劑皆可以用MSN或OMSN來承載,並成功送達至人工培植的癌細胞內。這些化合物的PDT效果往往媲美那些以介面活性劑配方的同類光敏劑。雖然證明了這些粒子表面可以予以修飾,其表面修飾層仍需要進一步的改善,以增強它們的靶向專一度和PDT功效。 / Yeung, Sin Lui. / Thesis Ph.D. Chinese University of Hong Kong 2015. / Includes bibliographical references (leaves 148-159). / Abstracts also in Chinese. / Title from PDF title page (viewed on 24, October, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
359

Modulatory effects of conjugated linolenic acid (CLN) on the proliferation and apoptosis of human myeloid leukemia cells.

January 2007 (has links)
Yip, Wai Ki. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 203-228). / Abstracts in English and Chinese. / ACKNOWLEDGMENTS --- p.i / ABBREVIATIONS --- p.iii / ABSTRACT --- p.x / 撮要 --- p.xiv / TABLE OF CONTENTS --- p.xvii / Chapter CHAPTER 1: --- GENERAL INTRODUCTION / Chapter 1.1 --- Hematopoiesis and Leukemia / Chapter 1.1.1 --- An Overview on Hematopoiesis Development --- p.1 / Chapter 1.1.1.1 --- Hematopoietic Growth Factors --- p.4 / Chapter 1.1.1.2 --- Site Switching of Hematopoiesis --- p.5 / Chapter 1.1.2 --- An Overview on Leukemia --- p.7 / Chapter 1.1.2.1 --- Classification of Leukemia --- p.7 / Chapter 1.1.2.2 --- Conventional Therapy of Leukemia --- p.10 / Chapter 1.1.2.3 --- Novel Approaches to Leukemia Therapy: Apoptosis and Differentiation Induction --- p.13 / Chapter 1.2 --- Polysaturated Fatty Acids / Chapter 1.2.1 --- An Overview on Polyunsaturated Fatty Acids --- p.16 / Chapter 1.2.2 --- An Overview on Essential Fatty Acids --- p.17 / Chapter 1.2.2.1 --- Alpha Linolenic Acids (ALA) --- p.17 / Chapter 1.2.2.2 --- Gamma Linolenic Acid (GLA) --- p.18 / Chapter 1.2.3 --- "An Overview on Conjugated Fatty Acids: Conjugated Linoleic Acid (CLA), Conjugated EPA and Conjugated DHA" --- p.20 / Chapter 1.2.4 --- Conjugated Linolenic Acid (CLN) --- p.24 / Chapter 1.2.4.1 --- Identification and Production of CLN --- p.28 / Chapter 1.2.4.2. --- Metabolism of CLN --- p.29 / Chapter 1.2.4.3 --- Anti-Obese and Hypolipidemic Effect of CLN --- p.30 / Chapter 1.2.4.4 --- Anti-Proliferative Effect of CLN --- p.30 / Chapter 1.2.4.5 --- Other Novel Effects of CLN --- p.32 / Chapter 1.3 --- Aims and Scopes of This Investigation --- p.34 / Chapter CHAPTER 2: --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.36 / Chapter 2.1.1 --- Animals --- p.36 / Chapter 2.1.2 --- Human Cell Lines --- p.36 / Chapter 2.1.3 --- "Cell Culture Medium, Buffers and Other Reagents" --- p.38 / Chapter 2.1.4 --- Reagents and Buffer for Flow Cytometry --- p.44 / Chapter 2.1.5 --- Reagents for DNA Extraction --- p.47 / Chapter 2.1.6 --- Cell Death Detection ELISApLus --- p.48 / Chapter 2.1.7 --- Reagents for Measuring Caspase Activity --- p.50 / Chapter 2.1.8 --- Reagents for FACE´ёØ ELISA Kit --- p.53 / Chapter 2.1.9 --- Reagents for Western Blotting --- p.55 / Chapter 2.2 --- Methods --- p.65 / Chapter 2.2.1 --- Culturing the Tumor Cell Lines --- p.65 / Chapter 2.2.2 --- "Isolation, Preparation and Culturing of Murine Peritoneal Macrophages and Bone Marrow Cells" --- p.66 / Chapter 2.2.3 --- Anti-proliferation Assays --- p.67 / Chapter 2.2.4 --- Cell Viability Determination --- p.68 / Chapter 2.2.5 --- Determination of Anti-leukemia Activity In Vivo (In Vivo Tumorigenicity Assay) --- p.69 / Chapter 2.2.6 --- Cell Cycle Analysis by Flow Cytometry --- p.69 / Chapter 2.2.7 --- Detection of Apoptosis --- p.70 / Chapter 2.2.8 --- Assessment of Differentiation-associated Characteristics --- p.74 / Chapter 2.2.9 --- Measurement of Caspase Activities --- p.76 / Chapter 2.2.10 --- Protein Expression Study --- p.78 / Chapter 2.2.11 --- Detection of Phosphorylation of JNK by FACE´ёØ JNK ELISA Kit --- p.83 / Chapter 2.2.12 --- Detection of Phosphorylation of NF-kB by FACE´ёØ NF-kB p65 Profiler --- p.85 / Chapter 2.2.13 --- Statistical Analysis --- p.85 / Chapter CHAPTER 3: --- STUDIES ON THE ANTI PROLIFERATIVE EFFECTS OF CONJUGATED LINOLENIC ACIDS ON THE HUMAN MYELOID LEUKEMIA CELLS / Chapter 3.1 --- Introduction --- p.86 / Chapter 3.2 --- Results / Chapter 3.2.1 --- Anti-proliferative Activity of CLN Isomers on Various Myeloid Leukemia and Lymphoma Cell Lines In Vitro --- p.88 / Chapter 3.2.2 --- Direct Cytotoxic Effect of Jacaric Acid on HL-60 Cells In Vitro --- p.95 / Chapter 3.2.3 --- Cytotoxic Effect of Jacaric Acid on Primary Murine Cells and Human Normal Cell Lines In Vitro --- p.98 / Chapter 3.2.4 --- Kinetics and Reversibility Studies of the Anti-proliferative Effect of Four CLN Isomers on the Human Promyelocytic Leukemia HL-60 Cells --- p.101 / Chapter 3.2.5 --- Synergistic Anti-proliferative Effect of Jacaric Acid with Vitamin D3 and All Trans-Retinoic Acid (ATRA) on the Human Promyelocytic Leukemia HL-60 Cells In Vitro --- p.114 / Chapter 3.2.6 --- Effect of Jacaric Acid on the Cell Cycle Profile of the HL-60 Cells In Vitro --- p.116 / Chapter 3.2.7 --- Effect of Jacaric Acid on the In Vivo Tumorigenicity of the HL-60 Cells --- p.119 / Chapter 3.3 --- Discussion --- p.121 / Chapter CHAPTER 4: --- STUDIES ON THE APOPTOSIS-INDUCING AND DIFFERENTIATION-INDUCING EFFECTS OF CONJUGATED LINOLENIC ACIDS ON THE HUMAN MYELOID LEUKEMIA CELLS / Chapter 4.1.1 --- Introduction --- p.128 / Chapter 4.2 --- Results / Chapter 4.2.1 --- Induction of Apoptosis in the Human Promyelocytic Leukemia HL-60 Cells by Jacaric Acid --- p.134 / Chapter 4.2.2 --- Apoptosis-Inducing Effect of Jacaric Acid on the Human Promyelocytic Leukemia HL-60 Cells as Detected by Annexin V-GFP PI Double Staining Method --- p.138 / Chapter 4.2.3 --- Effect of Jacaric Acid on the Mitochondrial Membrane Potential in the Human Promyelocytic Leukemia HL-60 Cells --- p.140 / Chapter 4.2.4 --- Effects of Jacaric Acid on the Caspase Activities in the Human Promyelocytic Leukemia HL-60 Cells --- p.142 / Chapter 4.2.5 --- Effects of Jacaric Acid and Antioxidants on the ROS Induction in the Human Promyelocyic Leukemia hl-6 Cells --- p.147 / Chapter 4.2.6 --- Effect of N-acetyl-L-Cysteine on the Apoptosis-Inducing Activity of Jacaric Acid in the Human Promyelocytic Leukemia HL-60 Cells --- p.149 / Chapter 4.2.7 --- Morphological Studies on the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.151 / Chapter 4.2.8 --- Cell Size and Granularity of the Human Promyelocytic Leukemia HL-60 Cells after Treatment with Different CLN Isomers --- p.153 / Chapter 4.2.9 --- Expression of Differentiation-Related Cell Surface Markers in the Human Promyelocytic Leukemia HL-60 Cells after Treatment with Jacaric Acid --- p.155 / Chapter 4.3 --- Discussion --- p.158 / Chapter CHAPTER 5: --- STUDIES ON THE APOPTOSIS-ASSOCIATED PROTEINS AND SIGNALING PATHWAYS IN CONJUGATED LINOLENIC ACID-INDUCED APOPTOSIS OF THE HUMAN MYELOID LEUKEMIA CELLS / Chapter 5.1 --- Introduction --- p.165 / Chapter 5.2 --- Results / Chapter 5.2.1 --- Expression of Fas and Fas Ligand Proteins in the Jacaric Acid- treated Human Promyelocytic Leukemia HL-60 Cells --- p.171 / Chapter 5.2.2 --- Expression of Bcl-2 Family Member Proteins in the Jacaric Acid- treated Human Promyelocytic Leukemia HL-60 Cells --- p.173 / Chapter 5.2.3 --- Cytochrome c Release in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.175 / Chapter 5.2.4 --- Cleavage of Poly(ADP-ribose) Polymerase (PARP) in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.177 / Chapter 5.2.5 --- Phosphorylation of ERK in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.179 / Chapter 5.2.6 --- Phosphorylation of JNK in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.181 / Chapter 5.2.7 --- Phosphorylation of NF-kB Protein in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.183 / Chapter 5.3 --- Discussion --- p.185 / Chapter CHAPTER 6: --- CONCLUSIONS AND FUTURE PERSPECTIVES --- p.195 / REFERENCES --- p.203
360

In vitro and in vivo study of effects of andrographolide on hepatocarcinogenesis.

January 2006 (has links)
Lau Ven Gie Vengie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 113-121). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABSTRACT --- p.ii / 論文摘要 --- p.iv / TABLE OF CONTENTS --- p.vi / LIST OF FIGURES --- p.ix / LIST OF TABLES --- p.x / LIST OF ABBREVIATIONS --- p.xi / INTRODUCTION --- p.1 / Chapter I --- Hepatocellular Carcinoma --- p.1 / Risk factors --- p.1 / Stages in chemical carcinogenesis --- p.2 / Initiation --- p.2 / Promotion --- p.3 / Progression --- p.5 / Treatment of hepatocarcinoma --- p.6 / Chemotherapy ´ؤ hepatic arterial infusion (HAI) --- p.6 / Trans-arterial chemoembolization (TACE) --- p.7 / Radiofrequency ablation (RFA) --- p.8 / Percutaneous ethanol injection (PEI) --- p.9 / Liver resection --- p.9 / Liver transplantation --- p.10 / Chapter II --- Molecular Mechanisms: Oncogenes and Tumor-suppressor genes --- p.11 / Cell cycle control --- p.12 / p53 mutation in HCC --- p.13 / Normal functions of p53 and its target genes --- p.13 / p21(Wafl/Cipl/Sdil) --- p.13 / PCNA --- p.14 / Bcl-2 and Bax: the Bcl-2 family --- p.14 / Mdm2 --- p.17 / Chapter III --- Evaluation of the effects of hepatocarcinogenesis --- p.19 / GST-Pi --- p.19 / AST & ALT --- p.19 / Chapter IV --- Traditional Chinese Medicine (TCM) --- p.21 / Andrographis Paniculata --- p.21 / Pharmacological properties of andrographolide --- p.23 / Chapter V --- Aim of the project --- p.26 / MATERIALS AND METHODS --- p.27 / Chapter 1 --- Effects of andrographolide on cell viability and cell cycle --- p.27 / Chapter 1.1 --- Materials and solutions --- p.27 / Chapter 1.2 --- Preparation of solutions --- p.28 / Chapter 1.3 --- Procedures --- p.29 / Chapter 1.3.1 --- Seeding cells into culture flask --- p.29 / Chapter 1.3.2 --- Subculturing technique --- p.30 / Chapter 1.3.3 --- Neutral red assay --- p.30 / Chapter 1.3.4 --- DNA purification of HepG2 cells --- p.31 / Chapter 1.3.5 --- DNA gel electrophoresis --- p.32 / Chapter 1.3.6 --- Flow cytometry --- p.32 / Chapter 2 --- Effects of andrographolide on gene expressions --- p.33 / Chapter 2.1 --- Materials and solutions --- p.33 / Chapter 2.2 --- Preparation of solutions --- p.34 / Chapter 2.3 --- Procedures --- p.35 / Chapter 2.3.1 --- Cell treatments --- p.35 / Chapter 2.3.2 --- mRNA extraction from cell --- p.35 / Chapter 2.3.3 --- Determination of total RNA yield and quality yield --- p.36 / Chapter 2.3.4 --- RNA formaldehyde agarose gel electrophoresis --- p.36 / Chapter 2.3.5 --- cDNA synthesis --- p.37 / Chapter 2.3.6 --- "cRNA synthesis, labeling and amplification" --- p.39 / Chapter 2.3.7 --- cRNA purification --- p.40 / Chapter 2.3.8 --- Oligo GEArray hybridization --- p.41 / Chapter 2.3.9 --- Chemiluminescent detection --- p.43 / Chapter 2.3.10 --- Data analysis --- p.44 / Chapter 3 --- Effects of andrographolide on hepatocarcinogenesis in rats --- p.45 / Chapter 3.1 --- Materials and solutions --- p.45 / Chapter 3.2 --- Preparation of solutions --- p.46 / Chapter 3.3 --- Procedures --- p.47 / Chapter 3.3.1 --- Animal treatment --- p.47 / Chapter 3.3.2 --- Promotion (Experiment 1) --- p.48 / Chapter 3.3.3 --- Progression (Experiment 2) --- p.49 / Chapter 3.3.4 --- Extraction of blood serum --- p.52 / Chapter 3.3.5 --- Measurement of absorbance --- p.52 / Chapter 3.3.6 --- Tissue processing --- p.53 / Chapter 3.3.7 --- Hematoxylin and Eosin (H&E) Staining --- p.53 / Chapter 3.3.8 --- Immunohistochemical staining of GST-P --- p.54 / Chapter 3.3.9 --- Examination of liver sections --- p.55 / Chapter 4 --- "Effects of andrographolide on the expressions of Mdm2, p53, PCNA, Bax, Bcl-2 & p21" --- p.56 / Chapter 4.1 --- Materials and solutions --- p.56 / Chapter 4.2 --- Preparation of solutions --- p.57 / Chapter 4.3 --- Procedures --- p.59 / Chapter 4.3.1 --- Total mRNA extraction from liver --- p.59 / Chapter 4.3.2 --- Reverse transcription of mRNA to cDNA --- p.59 / Chapter 4.3.3 --- Protocol for polymerase chain reaction (PCR) --- p.60 / Chapter 4.3.4 --- DNA gel electrophoresis --- p.61 / Chapter 4.3.5 --- Nuclear protein extraction --- p.61 / Chapter 4.3.6 --- Cytosolic protein extraction --- p.62 / Chapter 4.3.7 --- Determination of protein concentration --- p.62 / Chapter 4.3.8 --- Immunoprecipitation of p53 from liver nuclear protein --- p.62 / Chapter 4.3.9 --- Protein gel electrophoresis by SDS-PAGE --- p.63 / Chapter 4.3.10 --- Western blotting --- p.64 / RESULTS --- p.66 / Chapter 1 --- Effects of andrographolide on cell viability and cell cycle --- p.66 / Chapter 2 --- Effects of andrographolide on gene expressions --- p.76 / Chapter 3 --- Effects of andrographolide on hepatocarcinogenesis in rats --- p.79 / Chapter 4 --- "Effects of andrographolide on the expressions of Mdm2, p53, PCNA, Bax, Bcl-2 & p21" --- p.91 / DISCUSSION --- p.102 / CONCLUSION --- p.111 / REFERENCES --- p.113

Page generated in 0.0659 seconds