Spelling suggestions: "subject:"timeresolved"" "subject:"sizeresolved""
141 |
Etude de la recristallisation du silicium par procédé laser nanoseconde pour la formation et le contrôle des jonctions ultraminces / Study of the recrystallization of silicon by nanosecond laser process for realization and control of ultra-shallow junctionsDarif, Mohamed 21 February 2011 (has links)
La réalisation des jonctions ultra-minces et fortement dopées est un enjeu majeur pour la continuité de la miniaturisation des dispositifs microélectroniques. Les techniques de production en termes d'implantation ionique et de recuit d'activation doivent évoluer afin de répondre aux exigences du marché de la microélectronique. Le travail de recherche de cette thèse s’inscrit dans le cadre du projet ALDIP (Activation Laser de Dopants implantés par Immersion Plasma) et a pour objectif l’étude et le contrôle du procédé laser pour la réalisation des jonctions ultra-minces sur silicium (cristallin ou préamorphisé par implantation ionique) dopé au bore. En effet, le contrôle in situ du processus de recuit laser s'avère indispensable pour l'industrialisation de ce procédé qui jusqu'au là a fait l'objet de plusieurs études de recherche. Ainsi, le travail réalisé durant cette thèse a permis de mettre en place une méthode de contrôle, in situ, qui a été calibrée afin de la rendre accessible par le milieu industriel. Il s'agit de la méthode RRT (Réflectivité Résolue en Temps). Pour mener ce travail de thèse à terme, nous avons utilisé deux dispositifs expérimentaux comportant chacun un laser UV impulsionnel nanoseconde, un système optique d’homogénéisation et un dispositif RRT. Par ailleurs, plusieurs techniques de caractérisation ex situ ont été employées (TOF-SIMS, MEB, ...) notamment dans l’objectif de calibrer la méthode RRT. Ce travail expérimental a été couplé à une étude de simulation numérique qui a permis de mieux comprendre les paramètres clés du recuit laser et qui s’est souvent avérée en bon accord avec les résultats expérimentaux obtenus. / The realization of highly-doped ultra-shallow junctions became a key point for the reduction of microelectronic devices. Production techniques (implantation and activation annealing) must evolve to meet the market requirements of microelectronics. This job takes part of the ALDIP (Laser Activation of Dopants implanted by Plasma Immersion) project and it is focused on the study and control of the laser process for the realization of ultra-shallow junctions. The in situ control of laser annealing process is indispensable for the industrialization of this technique, which until then was the subject of several research studies. Thus, the work done during this thesis has permitted to set up a control method, in situ, which was calibrated to make it accessible to the industry. This experimental device is based on the RRT method (Time Resolved Reflectivity). In order to carry this work forward, we used two experimental systems based on the RRT method with two different nanosecond laser pulses (UV) and a homogenizer system. In addition, several ex situ characterization techniques were used notably for the purpose of calibrating the RRT method. This experimental work has been coupled with a numerical simulation study which provided a better understanding of the key parameters of the laser annealing. This comparison has often proved to be in a good agreement with experimental results.
|
142 |
Etude d'un nouveau dispositif de bioimpression par laser / Study of a novel configuration of laser Assisted BioprintingAli, Muhammad 23 June 2014 (has links)
Les technologies laser sont largement utilisées dans le contexte de l'impression 3D de matériaux de toute taille ainsique pour la bioimpression des constituants de tissue biologiques. Dans ce contexte, la bioimpression par laser (LAB), basée sur le procédé LIFT, a émergé comme une technique permettant de s'affranchir des inconvénients des technologies d'impression à jet d'encre(par exemple le colmatage). La bioimpression par Laser est une technique d'écriture directe de matériaux sous forme solide ou liquide dotée d'une haute résolution spatiale. La technique permet ainsi le transfert précis de microgouttelettes (volume de l'ordre du pL) de biomatériaux et de cellules sur un substrat de réception. Dans nos travaux de recherche, afin de mieux comprendre la dynamique du processus de transfert et d'utiliser la technique en ingénierie tissulaire, nous avons avons développé une approche expérimentale basée sur une méthode d'imagerie résolue en temps. Nous avons tout d'abord caractérisé les différents régimes d'éjection afin de définir des conditions appropriées à l'impressiond'éléments biologiques. Nous avons également exploré la fenêtre d'éjection, afin d'étudier l'influence de l'énergie laser sur la dynamique de jet. Ensuite, nous avons étudié une nouvelle de configuration bioimpression par laser pour laquelle des études paramétriques impliquant l'effet de la viscosité et de la distance d'impression sur la morphologie des gouttes imprimées ont été réalisées. Cette configuration permet d'imprimer des encres biologiques en obtenant des contours très lisses et uniformes jusqu’à une grande distance de séparation (≤10 mm). Les paramètres d'impression de cellules ont aussi été analysées par TRI en fonction de la concentration cellulaire des encres. Nos résultats fournissent des renseignements clés sur l'optimisation et devraient permettre un meilleur contrôle du mécanisme de transfert du processus de LAB. Enfin à la lumière de ces études, nous proposons un mécanisme complet pour la bioimpression par laser. / Laser-based approaches are among the pioneering works in cell printing. These techniques are being extensively focussed for two or three-dimensional structures of any size in transferring pattern materials including deposition of 3D biological constructs. In this context, Laser-Assisted Bioprinting (LAB), based on Laser-Induced Forward Transfer (LIFT) has emerged as a nozzleless method to surmount the drawbacks (e.g. clogging) of inkjet printing technologies. LAB is a laser direct-write technique that offers printing micropatterns with high spatial resolution from a wide range of solid or liquid materials, such as dielectrics, biomaterials and living cells. The technique enables controlled transfer of droplets onto a receiving substrate. A typical LAB setup comprises three key components: (i) a pulsed laser source, (ii) a ribbon coated with the material to be transferred and (iii) a receiving substrate. The ribbon integrates three layers: (i) a quartz disk support transparent to laser wavelength, (ii) a thin (1–100 nm) absorbing layer (like Ti or Au), and (iii) a bioink layer (few tens of microns) incorporating the material to print. The receiving substrate is faced to the bioink and placed at 100 μm to 1 mm distance from the ribbon. Rapid thermal expansion of metallic layer (on absorbing laser pulse) propels a small volume (~pL) of the ink towards a receiving substrate. Such a metallic interlayer eliminates direct interaction between the laser beam and the bioink. Volume of deposited material depends linearly on the laser pulse energy, and that a minimum threshold energy is required for microdroplet ejection. The thickness of the absorbing layer, viscosity and thickness of the bioink, different optical parameters such as the focus spot and the laser fluence are the controlling parameters to obtain a microscopic resolution and to limit the shock inflicted on the ejected cells. In our research works, we considered experimental approach to study the physical mechanism involved in the LAB using a time-resolved imaging method in order to gain a better insight into the dynamics of the transfer process and to use the technique for printing biomaterials. First we designed and implemented a novel configuration of LAB for upward printing. Then we characterized different ejection regimes to define suitable conditions for bioprinting. We further explored jetting window to study the influence of laser energy on jet dynamics. Ejection dynamics has been investigated by temporal evolution of the liquid jet for their potential use in cell printing. In addition parametric studies like effect of viscosity and printing distance on the morphology of the printed drops were conducted to explore jetting “window”. This configuration allows debris-free printing of fragile bioinks with extremely smooth and uniform edges at larger separation distance (ranging from 3 to 10mm). Material criteria required for realization of the cell printing are discussed and supported by experimental observations obtained by TRI investigation of cell printing from donors with different cell concentrations. These results provide key insights into optimization and better control of transfer mechanism of LAB. Finally, in the light of these studies, a comprehensive mechanism is proposed for printing micro-drops by LAB.
|
143 |
Studium optických nelinearit v polovodičích a polovodičových nanostrukturách / Studium optických nelinearit v polovodičích a polovodičových nanostrukturáchKozák, Martin January 2013 (has links)
This Ph.D. thesis is focused on the study of optical nonlinearities and dynamics of excited charge carriers in monocrystalline diamond, nanocrystalline diamond and silicon. The dynamics of high density carriers in bulk diamond is investigated in detail (the transition from excitons and free carriers to electron-hole liquid or plasma). We study the picosecond dynamics of electron-hole liquid condensation using several techniques of time-resolved optical spectroscopy and demonstrate its evaporation by femtosecond laser pulses. We also propose two new optical techniques for measurement of lifetime, diffusion coefficient and surface recombination velocity of excitons in diamond. The results obtained by these techniques are described theoretically using diffusion equation and compared with the results obtained by the transient grating diffraction measurement. Further we study two- and three- photon absorption and nonlinear refractive index in diamond. In nanocrystalline diamond we study the second and third harmonic generation and its physical origin. In superlattices of silicon nanocrystals in SiO2 matrix we investigate the nonlinear transient absorption dynamics and carrier diffusion.
|
144 |
Ultrarychlá laserová spektroskopie hybridních nanosystémů / Ultrafast spectroscopy of hybrid nanosystemsGalář, Pavel January 2016 (has links)
Title: Ultrafast spectroscopy of hybrid nanosystems Author: RNDr. Pavel Galář Department: Department of Chemical Physics and Optics Supervisor: prof. RNDr. Petr Malý, DrSc. Abstract: This Ph. D. thesis is focused on physical phenomena located at the interface of hybrid nanostructure composed of polycrystalline diamond and polymer polypyrrole. The main method used in our experimental study was ultrafast laser spectroscopy that allowed us to gain new findings about electron recombination processes in polycrystalline diamond layers, polypyrrole and in their hybrid structures. The research was focused on mutual influence of both components, especially through energy and charge transfer. In the first step of our research we carried out optical characterisation of different kinds of polypyrrole and complex study of recombination processes dynamics of photoexcited charge carriers in polycrystalline diamond. The measurements were realized by the methods of time-resolved photoluminescence and transmission spectroscopy in the time scale from picoseconds to milliseconds. On the basis of the obtained results the model explaining the origin of luminescence signal related to the different kinds of electron recombination processes in non- diamond phase and on surface defects of diamond grains in polycrystalline layers was...
|
145 |
Časově rozlišená spektroskopie polovodičů se širokým zakázaným pásem / Time-resolved spectroscopy of wide-bandgap semiconductorsMartínek, Miroslav January 2017 (has links)
In this thesis experimental samples of multiple quantum wells in the InGaN/GaN structures will be compared using methods of laser spectroscopy. In particular, the optical properties of the samples will be investigated. The samples were prepared under different conditions; therefore one of the aims is to compare them. The knowledge of the influence of preparation enables utilization not only for fundamental research, but also for the construction of radiation sources or scintillation detectors. Measurements of absorption and photoluminescence will be carried out and their dynamic properties will be measured as well. There will be examined the effect of different excitation power and different excitation wavelength on the intensity of photoluminescence. From dynamic properties there will be examined the effect of different excitation wavelength on the lifetime of the absorption and how does temperature influence the lifetime of the photoluminescence. Individual quantities will be compared amongst samples and their suitability for further applications will be discussed.
|
146 |
Studium optických nelinearit v polovodičích a polovodičových nanostrukturách / Study of optical nonlinearities in semiconductors and semiconductor nanostructuresChlouba, Tomáš January 2019 (has links)
In the main part of this thesis I study the relaxation mechanisms of charge carriers in silicon nanocrystals in SiO2 matrix. One of the potential applications of these structures lies in photovoltaics, specifically in construction of all-silicon tandem solar cells. I studied the dynamics of carriers in these structures by methods of ultrafast spectroscopy which helped to unravel the microscopic behaviour of carriers, their transport, localization etc. Furthermore I investigated the doping of such structures as the technology of doping is crucial for manufacture of pn- junctions which are the core component of solar cells. At the end I delve into the dissipative Jaynes-Cummings model by mathematical modeling and theoretical calculations which describes among others microlasers and as such comes under a field of cavity quantum electrodynamics.
|
147 |
Förster Resonance Energy Transfer Immunoassays Using Engineered Proteins for Breast Cancer Biomarker Detection / Tests immunologiques par transfert d'énergie par résonance de Förster en utilisant des protéines modifiées pour la détection de biomarqueurs du cancer du seinWu, Yu-Tang 24 September 2018 (has links)
Les protéines modifiées ont suscité un grand intérêt en raison de leur taille extrêmement petite par rapport à l'anticorps entier. Ces petites protéines de liaison ont démontré de nombreux avantages tels qu'une bio distribution rapide, une bonne pénétration dans le tissu tumoral et une élimination rapide du sérum et des tissus non-infectés. Ainsi, ces protéines devraient être d'excellentes alternatives aux anticorps pour les applications cliniques. Cette thèse présente le développement de biocapteurs basés sur des anticorps synthétiques et le transfert d'énergie par résonance de type Förster (FRET) résolu en temps par la détection de biomarqueurs. Les tests immunologiques à base de FRET sont établis en utilisant des complexes de terbium (Tb) comme donneurs de FRET et des boîtes quantiques semi-conducteurs (QDs) comme accepteurs de FRET. Les propriétés photophysiques exceptionnelles de ce couple de FRET Tb-QD permettent une détection quantitative ultrasensible. Des anticorps monocaténaires (single-domain antibody, sdAb) et des petites protéines d’affinité synthétiques (albumin-binding domain-derived affinity protein, ADAPT) sont utilisés pour étudier différentes stratégies de conjugaison d'anticorps, et quantifier des biomarqueurs cliniques (EGFR, HER2). Ce travail peut être considéré comme une condition préalable à l’utilisation des QDs en diagnostic clinique. / Engineered affinity proteins have raised great interest due to their extremely small size compared to full length antibodies. Such small binding proteins have demonstrated many advantages such as quick biodistribution, good penetration into tumor tissue, and fast elimination from serum and nondiseased tissues. Thus, they are expected to be excellent alternatives to antibodies for clinical applications. This thesis focuses on the development of biosensors based on engineered antibodies and time-resolved Förster resonance energy transfer (FRET) through biological recognition of biomarkers. FRET-based immunoassays are established using terbium complexes (Tb) as FRET donors and semiconductor quantum dots (QDs) as FRET acceptors. The exceptional photophysical properties of the Tb-QD FRET pair allow for ultrasensitive quantitative biosensing. Single-domain antibodies (sdAb) and small engineered scaffold antibodies (ADAPT) are used to investigate different antibody-conjugation strategies for quantifying human epidermal growth factor receptors (EGFR, HER2) as clinical biomarkers. This work can be considered as a prerequisite to implementing QDs into applied clinical diagnostics.
|
148 |
Hot-phonon effects in photo-excited wide-bandgap semiconductorsHerrfurth, Oliver, Krüger, E., Blaurock, S., Krautscheid, H., Grundmann, Marius 03 May 2023 (has links)
Carrier and lattice relaxation after optical excitation is simulated for the prototypical
wide-bandgap semiconductors CuI and ZnO. Transient temperature dynamics of electrons,
holes as well as longitudinal-optic (LO), transverse-optic (TO) and acoustic phonons are
distinguished. Carrier-LO-phonon interaction constitutes the dominant energy-loss channel as
expected for polar semiconductors and hot-phonon effects are observed for strong optical
excitation. Our results support the findings of recent time-resolved optical spectroscopy
experiments.
|
149 |
Intense, Ultrafast Light-Solid Interactions in the Near-InfraredTripepi, Michael Vincent 30 August 2022 (has links)
No description available.
|
150 |
Probing Coherent States and Nonlinear Properties in Multifunctional Material SystemsHerath Mudiyanselage, Rathsara Rasanjalee Herath 15 April 2021 (has links)
The rapid progress on developing new and improved multifunctional materials, for optoelectronic and spin based phenomena/devices, have increased the importance of the fundamental understanding of their coherent states and nonlinear optical properties. This study is aimed at characterizing, modeling, and controlling the fundamental electronic, phononic, and spin properties of several classes of materials through nonequilibrium and nonlinear light-matter interactions, coupled with a novel design of the material phases, interfaces, and heterostructures. This research directly addresses the Grand Challenges identified in the Basic Energy Sciences Advisory Committee report "Directing Matter and Energy: Five Challenges for Science and the Imagination" (Hemminger, 2007) [1], in particular, the area: "Matter far beyond equilibrium" and addresses the questions, "How do remarkable properties of matter emerge from complex correlations of the atomic or electronic constituents and how can we control these properties?" and "How do we design and perfect atom- and energy-efficient synthesis of revolutionary new forms of matter with tailored properties?". The knowledge gained from these fundamental studies can provide new information for a broad community to provide concepts for the next generation of multifunctional materials and devices, and resulted in several publications and conference presentations. The materials studied in this dissertation included multiferroic BaTiO3-BiFeO3 [2], ferroelectric Pb0.52Zr0.48TiO3 (PZT), InAs/AlAsSb multi-quantum-well [3], lead halide perovskite [4], n-type InAsP films [5, 6], and nanolaminate plasmonic crystals [7]. Probing multiferroics, which are materials that can exhibit ferromagnetic, ferroelectric, and ferroelastic orders simultaneously in a single phase, was a main focus of this study. BiFeO3 (BFO) is the most widely investigated multiferroic due to its high Neel and Curie temperatures and has antiferromagnetic and ferroelectric properties [8]. An inherent drawback of BFO is its large leakage currents. In this project, (1 − x)BaTiO3-(x)BiFeO3, x = 0.725 (BTO-BFO) heterostructures were investigated [9], where the conductivity of the solid solution can be reduced by adding another perovskite material, BaTiO3 [2]. We aimed to study optically induced coherent states in our BTO-BFO structures. Time resolved pumpprobe spectroscopic measurements were performed at room temperature as well as at low temperature (100 K) up to 10 T. Coherent acoustic phonons were observed both in a film and nanorods, resulting in coherent phonon frequencies of 27 and 33 GHz, respectively [2]. Coherent phonon spectroscopy is a sensitive tool to characterize the interfaces and can be employed as an effective ultrasensitive quantum sensor [10]. Furthermore, in the nanorods arrays of BTO-BFO, an additional oscillation with frequency in the range of 8.1 GHz was observed. This frequency is close to a theoretically predicted magnon frequency which could indicate the coexistence of coherent phonons and magnons in the nanorods arrays [2]. In an analogy to photonics which relies on electromagnetic waves, magnonics utilizes spin waves to carry and process information, offering several advantages such as an operation frequency in the THz range. Recently, "a quantum tango" [11] was reported where coupled coherent magnon and phonons modes were formed on a surface patterned ferromagnet. Furthermore, BTO-BFO heterostructures were probed using transient birefringence and magneto-optical Kerr effect spectroscopy. The results demonstrated that the magnetic field dependence of coherent phonons, measured by these two techniques, exhibits more sensitivity to the external magnetic fields compared to the differential reflectivity technique [2]. Moreover, nonlinear optical properties of this structure were investigated via second harmonic generation spectroscopy, where wavelength and polarization dependence of this nonlinear observation will be discussed in this dissertation. As part of this study, another class of multiferroic materials, with strong ferroelectric and piezoelectric properties, Pb0.52Zr0.48TiO3 (PZT) was studied [12]. In this project, the nonlinear optical properties of PZT nanorod arrays were investigated. Clear signatures of second harmonic generations from 490-525 nm (2.38-2.53 eV) at room temperature, were observed. Furthermore, time resolved differential reflectivity measurements were performed to study dynamical properties in the range of 690-1000 nm where multiphoton processes were responsible for the photoexcitations. We compared this excitation scheme, which is sensitive mainly to the surface states, to when the photoexcited energy (∼ 3.1 eV) was close to the bandgap of the nanorods. Our results offer promises for employing these nanostructures in nonlinear photonic applications. Furthermore, the established techniques during my research provided new insights on optical properties of InAs/AlAsSb multi-quantum-well [3], lead halide perovskite [4], n-type InAsP films [5, 6], and nanolaminate plasmonic crystals [7], and the results will be briefly presented in this dissertation. / Doctor of Philosophy / My research activities have explored multifunctional materials and heterostructures with strongly enhanced coupled electric and magnetic orders and optical properties. In particular, pursuing novel heterostructure designs such as multiferroics can provide control over electric and magnetic ordering in mixed dimensionality. This, together with control at the level from lattice structure to electron spin states can give rise to improved or even qualitatively new and robust materials properties. For example, a better understanding of the phenomena associated with the spin degree of freedom of electrons allows for advancement in spintronic device applications such as storage, logic, and sensors, which are associated with quantum computers and quantum communications [13, 14, 15]. Overarching questions and goals of my activities included: What are the microscopic origins and mechanisms of nonlinear response in strongly coupled nanostructured materials and its relationship to electronic, spin, and lattice degrees of freedom? (2) What are the effects of dimensionality and quantum confinement on optical properties? (3) How do we control and manipulate the coherent states, such as coherent phonons and magnons using external and internal fields, material composition, and morphology to achieve maximal efficiency and tunability? Addressing many of the challenges in the fast-paced technological world requires continued developments of new materials with enhanced optical properties. The knowledge gained from my fundamental studies can provide new information for the next generation of multifunctional materials and devices with advanced optical properties and resulted in several publications and conference presentations.
|
Page generated in 0.0447 seconds