• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Interfacial Property with Imperfection: A Machine Learning Approach

Ferdousi, Sanjida 07 1900 (has links)
Interfacial mechanical properties of adhesive joints are very crucial in board applications, including composites, multilayer structures, and biomedical devices. Establishing traction-separation (T-S) relations for interfacial adhesion can evaluate mechanical and structural reliability, robustness, and failure criteria. Due to the short range of interfacial adhesion such as micro to nanoscale, accurate measurements of T-S relations remain challenging. The advent of machine learning (ML) became a promising tool to predict materials behaviors and establish data-driven mechanical models. In this study, we integrated a state-of-the-art ML method, finite element analysis (FEA), and standard experiments to develop data-driven models for characterizing the interfacial mechanical properties precisely. Macroscale force-displacement curves are derived from FEA with incorporation of double cantilever beam tests to generate the dataset for ML model. The eXtreme Gradient Boosting (XGBoost) multi-output regressions and classifier models are used to determine T-S relations with R2 score of 98.8% and locate imperfections at the interface with accuracy of around 80.8%. The outcome of the XGBoost models demonstrated accurate predictions and fast calculation speed, outperforming several other ML methods. Using 3D printed double cantilever beam specimens, the performance of the ML models is validated experimentally for different materials. Furthermore, a XGBoost model-based package is designed to obtain different adhesive materials T-S relations without creating a database or training a model.
2

Numerical study on flexural and bond-slip behaviours of GFRP profiled-concrete composite beams with groove shear connector

Ge, W., Zhang, Z., Guan, Z., Ashour, Ashraf, Ge, Y., Chen, Y., Jiang, H., Sun, C., Yao, S., Yan, W., Cao, D. 31 October 2022 (has links)
Yes / GFRP profiled-concrete composite beams with groove shear connectors are analyzed using finite the element (FE) analysis. The concrete damaged plasticity (CDP) model was adopted for normal strength concrete (NSC) and reactive powder concrete (RPC). The orthotropic behaviour of GFRP profile was taken into consideration, and the bi-linear traction-separation model was used to investigate the bond-slip behavior between GFRP profile and concrete. Furthermore, parametric studies were conducted to investigate the effects of strength and the cross-sectional dimensions of concrete, strength (orthotropy), and the cross-sectional dimensions (the web height and the thickness of FRP plate). Numerical analysis results correlate well with experimental results. Based on numerical analysis, the composite beam with shear connectors spacing at 100 mm has a deflection-limit load of 21.4 % higher than the specimens with 150 mm spacing. It is possible to improve the bonding behavior of interfaces by using groove shear connectors. The ultimate load and deformation, and pseudo-ductility were significantly improved by using RPC with high strength and toughness (ultimate compressive strain). GFRP profiles with greater orthotropy coefficients provide fully utilized concrete's compressive strength, preventing premature crushing and enhancing composite structure stiffness. Flexural performance of the composite beams can be improved efficiently by choosing the appropriate sectional size during design and construction. / The authors would like to thank the financial support provided by the Natural Science Foundation of Jiangsu Province, China (BK20201436), the Science and Technology Project of Jiangsu Construction System (2018ZD047, 2021ZD06), the Science and Technology Project of Gansu Construction System (JK2021-19), the Open Foundation of Jiangsu Province Engineering Research Center of Prefabricated Building and Intelligent Construction (2021), the High-End Foreign Experts Project of Ministry of Science and Technology, China (G2022014054L), the Science and Technology Cooperation Fund Project of Yangzhou City and Yangzhou University (YZU2022194, YZU212105), the Blue Project Youth Academic Leader of Colleges and Universities in Jiangsu Province (2020), the Science and Technology Project of Yangzhou Construction System (2022ZD03, 202204) and the Technology Innovation Cultivation Fund of Yangzhou University (2020-65).
3

Tearing of Styrene Butadiene Rubber using Finite Element Analysis

Bahadursha, Venkata Rama Lakshmi Preeethi 27 May 2015 (has links)
No description available.
4

Finite Element Analysis of Bi-Metallic Structures with Adhesive Delamination

Cardanini, Alisha Ann January 2017 (has links)
No description available.
5

Efficient Risk Assessment Using Probability of Fracture Nomographs

Shanmugam, Venkateswaran 12 December 2011 (has links)
No description available.
6

Rate-dependent cohesive-zone models for fracture and fatigue

Salih, Sarmed January 2018 (has links)
Despite the phenomena of fracture and fatigue having been the focus of academic research for more than 150 years, it remains in effect an empirical science lacking a complete and comprehensive set of predictive solutions. In this regard, the focus of the research in this thesis is on the development of new cohesive-zone models for fracture and fatigue that are afforded an ability to capture strain-rate effects. For the case of monotonic fracture in ductile material, different combinations of material response are examined with rate effects appearing either in the bulk material or localised to the cohesive-zone or in both. The development of a new rate-dependent CZM required first an analysis of two existing methods for incorporating rate dependency, i.e.either via a temporal critical stress or a temporal critical separation. The analysis revealed unrealistic crack behaviour at high loading rates. The new rate-dependent cohesive model introduced in the thesis couples the temporal responses of critical stress and critical separation and is shown to provide a stable and realistic solution to dynamic fracture. For the case of fatigue, a new frequency-dependent cohesive-zone model (FDCZM) has been developed for the simulation of both high and low-cycle fatigue-crack growth in elasto-plastic material. The developed model provides an alternative approach that delivers the accuracy of the loading-unloading hysteresis damage model along with the computational efficiency of the equally well-established envelope load-damage model by incorporating a fast-track feature. With the fast-track procedure, a particular damage state for one loading cycle is 'frozen in' over a predefined number of cycles. Stress and strain states are subsequently updated followed by an update on the damage state in the representative loading cycle which again is 'frozen in' and applied over the same number of cycles. The process is repeated up to failure. The technique is shown to be highly efficient in terms of time and cost and is particularly effective when a large number of frozen cycles can be applied without significant loss of accuracy. To demonstrate the practical worth of the approach, the effect that the frequency has on fatigue crack growth in austenitic stainless-steel 304 is analysed. It is found that the crack growth rate (da/dN) decreases with increasing frequency up to a frequency of 5 Hz after which it levels off. The behaviour, which can be linked to martensitic phase transformation, is shown to be accurately captured by the new FDCZM.
7

Interfacial debonding from a sandwiched elastomer layer

Mukherjee, Bikramjit 25 June 2016 (has links)
The problem of a thin elastomeric layer confined between two stiff adherends arises in numerous applications such as microelectronics, bio-inspired adhesion and the manufacture of soft biomedical products. A common requirement is that the debonding of the elastomeric layer from the adherends be controlled to avoid undesirable failure modes. This level of control may necessitate understanding the collective role of the interfacial adhesion, material properties, part geometries, and loading conditions on the debonding. Analytical and numerical approaches using the finite element method and a cohesive zone model (CZM) for the interfacial debonding are used in this dissertation to delineate the role of the afore-mentioned parameters on the initiation and propagation of debonding for both rigid and non-rigid adherends. Extensively studied in the dissertation is the debonding of a semi-infinite relatively stiffer adherend from an elastomer layer with its other surface firmly bonded to a rigid base. The adherend is pulled upwards by applying normal displacements either on its entire unbonded surface or on the edge of its part overhanging from the elastomer layer. The adherend and the elastomeric layer materials are assumed to be linear elastic, homogeneous and isotropic and the elastomer is assumed to be incompressible. Viscoelasticity of the elastomer is considered in the first part of the work. Plane strain deformations of the system with a bilinear traction-separation (TS) relation in the CZM are analyzed. Two non-dimensional numbers, one related to the layer confinement and the other to the interfacial TS parameters, are found to determine if debonding initiates at interior points in addition to at corner points on the adherend/elastomer interface, and if adhesion-induced instability is exhibited. This work is extended to axisymmetric problems in which debonding can take place at both interfaces. Motivated by an industrial demolding problem, numerical experiments are conducted to derive insights into preferential debonding at one of the two interfaces, including for curved adherends. Results reported herein should help engineers design an elastomer layer sandwiched between two adherends for achieving desired failure characteristics. / Ph. D.
8

Moisture absorption characteristics and effects on mechanical behaviour of carbon/epoxy composite : application to bonded patch repairs of composite structures

Wong, King Jye 18 June 2013 (has links) (PDF)
Le travail présenté dans ce mémoire avait pour objectif d'étudier le processus de la pénétration d'eau dans les composites en carbone/époxyde dans un premier temps, et dans un deuxième temps, d'étudier l'effet de la prise en eau par ces matériaux sur les performances mécaniques des composites et leur joints collés. L'intégration de ces phénomènes physiques dans la modélisation numérique est d'une grande importance dans la prédiction de la durabilité d'une structure en composite subissant un vieillissement hygrothermique. Par conséquent, ce travail consiste non seulement en des observations expérimentales, mais aussi en des simulations numériques. Des corrélations entre les résultats obtenus permettent d'une part de mieux comprendre ce qui se passe dans un système composite avec l'assemblage collé soumis à des charges mécaniques, de l'initiation d'endommagement jusqu'à la rupture finale ; d'autre part, de valider un modèle numérique robuste dans le but de la conception et de l'optimisation. Les originalités de ce travail se situent à différents niveaux en proposant : 1. un nouveau modèle de diffusion à deux-phases permettant de mieux décrire l'effet de l'épaisseur des stratifiés sur la pénétration de l'eau; 2. un nouveau modèle RPM " Residual Property Model " afin de prévoir la dégradation des propriétés mécaniques due à la prise en eau ; 3. une nouvelle loi de traction-séparation linéaire-exponentiel pour décrire la courbe-R observée dans les essais DCB en mode I pur sur les composites stratifiés afin de les intégrer plus facilement dans les modèles numériques
9

Moisture absorption characteristics and effects on mechanical behaviour of carbon/epoxy composite : application to bonded patch repairs of composite structures / Prise en eau par composites carbone/époxy et leur effet sur le comportement mécanique : application aux réparations de structures en composite par collage de patchs externes

Wong, King Jye 18 June 2013 (has links)
Le travail présenté dans ce mémoire avait pour objectif d’étudier le processus de la pénétration d'eau dans les composites en carbone/époxyde dans un premier temps, et dans un deuxième temps, d’étudier l’effet de la prise en eau par ces matériaux sur les performances mécaniques des composites et leur joints collés. L'intégration de ces phénomènes physiques dans la modélisation numérique est d'une grande importance dans la prédiction de la durabilité d’une structure en composite subissant un vieillissement hygrothermique. Par conséquent, ce travail consiste non seulement en des observations expérimentales, mais aussi en des simulations numériques. Des corrélations entre les résultats obtenus permettent d’une part de mieux comprendre ce qui se passe dans un système composite avec l’assemblage collé soumis à des charges mécaniques, de l’initiation d’endommagement jusqu’à la rupture finale ; d'autre part, de valider un modèle numérique robuste dans le but de la conception et de l’optimisation. Les originalités de ce travail se situent à différents niveaux en proposant : 1. un nouveau modèle de diffusion à deux-phases permettant de mieux décrire l’effet de l’épaisseur des stratifiés sur la pénétration de l’eau; 2. un nouveau modèle RPM « Residual Property Model » afin de prévoir la dégradation des propriétés mécaniques due à la prise en eau ; 3. une nouvelle loi de traction-séparation linéaire-exponentiel pour décrire la courbe-R observée dans les essais DCB en mode I pur sur les composites stratifiés afin de les intégrer plus facilement dans les modèles numériques / Le travail présenté dans ce mémoire avait pour objectif d’étudier le processus de la pénétration d'eau dans les composites en carbone/époxyde dans un premier temps, et dans un deuxième temps, d’étudier l’effet de la prise en eau par ces matériaux sur les performances mécaniques des composites et leur joints collés. L'intégration de ces phénomènes physiques dans la modélisation numérique est d'une grande importance dans la prédiction de la durabilité d’une structure en composite subissant un vieillissement hygrothermique. Par conséquent, ce travail consiste non seulement en des observations expérimentales, mais aussi en des simulations numériques. Des corrélations entre les résultats obtenus permettent d’une part de mieux comprendre ce qui se passe dans un système composite avec l’assemblage collé soumis à des charges mécaniques, de l’initiation d’endommagement jusqu’à la rupture finale ; d'autre part, de valider un modèle numérique robuste dans le but de la conception et de l’optimisation. Les originalités de ce travail se situent à différents niveaux en proposant : 1. un nouveau modèle de diffusion à deux-phases permettant de mieux décrire l’effet de l’épaisseur des stratifiés sur la pénétration de l’eau; 2. un nouveau modèle RPM « Residual Property Model » afin de prévoir la dégradation des propriétés mécaniques due à la prise en eau ; 3. une nouvelle loi de traction-séparation linéaire-exponentiel pour décrire la courbe-R observée dans les essais DCB en mode I pur sur les composites stratifiés afin de les intégrer plus facilement dans les modèles numériques

Page generated in 0.1195 seconds