• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust transceivers to combat impulsive noise in powerline communications

Lin, Jing, active 2014 25 June 2014 (has links)
Future smart grid systems will intelligently monitor and control energy flows in order to improve the efficiency and reliability of power delivery. This monitoring and control requires low-power, low-cost and highly reliable two-way communications between customers and utilities. To enable these two-way communication links, powerline communication (PLC) systems are attractive because they can be deployed over existing outdoor and indoor power lines. Power lines, however, have traditionally been designed for one-directional power delivery and remain hostile environments for communication signal propagation. In particular, non-Gaussian noise that is dominated by asynchronous impulsive noise and periodic impulsive noise, is one of the primary factors that limit the communication performance of PLC systems. For my PhD dissertation, I propose transmitter and receiver methods to mitigate the impact of asynchronous impulsive noise and periodic impulsive noise, respectively, on PLC systems. The methods exploit sparsity and/or cyclostationarity of the noise in both time and frequency domains, and require no or minor training overhead prior to data transmission. Compared to conventional PLC systems, the proposed transceivers achieve dramatic improvement (up to 1000x) in coded bit error rates in simulations, while maintaining similar throughput. / text
2

Challenges of Optimizing Multiple Modulation Schemes in Transponder Design

Fairbanks, John S. 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / Increasing gate counts in FPGA’s create an option of offering multiple waveform demodulation and modulation within a single transponder transceiver. Differing data rates, channel schemes, and network protocols can be addressed with the flexibility of software-based demodulation and modulation. Increased satellite longevity and reliability are benefits of software-based transceiver design. Newer packaging technology offers additional capability in reducing form factor and weight of a transponder. A review of the challenges in combining each of the above to produce the next generation of transponders is the subject of this paper.
3

Resource management in cooperative MIMO-OFDM cellular systems

Tölli, A. (Antti) 01 April 2008 (has links)
Abstract Radio resource management techniques for broadband wireless systems beyond the existing cellular systems are developed while considering their special characteristics such as multi-carrier techniques, adaptive radio links and multiple-input multiple-output (MIMO) antenna techniques. Special focus is put on the design of linear transmission strategies in a cooperative cellular system where signal processing can be performed in a centralised manner across distributed base station (BS) antenna heads. A time-division duplex cellular system based on orthogonal frequency division multiplexing (OFDM) with adaptive MIMO transmission is considered in the case where the received signals are corrupted by non-reciprocal inter-cell interference. A bandwidth efficient closed-loop compensation algorithm combined with interference suppression at the receiver is proposed to compensate for the interference and to guarantee the desired Quality of Service (QoS) when the interference structure is known solely at the receiver. A greedy beam ordering and selection algorithm is proposed to maximise the sum rate of a multiuser MIMO downlink (DL) with a block zero forcing (ZF) transmission. The performance of the block-ZF transmission combined with the greedy scheduling is shown to approach the sum capacity as the number of users increases. The maximum sum rate is often found to be achieved by transmitting to a smaller number of users or beams than the spatial dimensions allow. In addition, a low complexity algorithm for joint user, bit and power allocation with a low signalling overhead is proposed. Different linear transmission schemes, including the ZF as a special case, are developed for the scenario where the cooperative processing of the transmitted signal is applied to users located within a soft handover (SHO) region. The considered optimisation criteria include minimum power beamformer design; balancing the weighted signal-to-interference-plus-noise ratio (SINR) values per data stream; weighted sum rate maximisation; and balancing the weighted rate per user with additional QoS constraints such as guaranteed bit rate per user. The method can accommodate supplementary constraints, e.g., per antenna or per BS power constraints, and upper/lower bounds for the SINR values of the data streams. The proposed iterative algorithms are shown to provide powerful solutions for difficult non-convex transceiver optimisation problems. System level evaluation is performed in order to assess the impact of a realistic multi-cell environment on the performance of a cellular MIMO-OFDM system. The users located in the SHO region are shown to benefit from greatly increased transmission rates. Consequently, significant overall system level gains result from cooperative SHO processing. The proposed SHO scheme can be used for providing a more evenly distributed service over the entire cellular network.
4

IMPACT OF NOISES AND NONLINEARITY ON ANALOG SELF-INTERFERENCE CANCELLATION IN IN-BAND FULL-DUPLEX COMMUNICATIONS

Jonathan M Shilling (11813957) 18 December 2021 (has links)
<p>A wireless revolution has occurred resulting in the formation of a proverbial backbone of wireless devices that our everyday functionality, productivity, and general way of life have become dependent. Consequently, victimizing an already constrained and finite wireless spectrum with further demands for increased bandwidths, greater channel capacities, and an insatiable plea for faster access rates. In-band full-duplexing (IBFD) is an innovative and encouraging technology that aims to answer this tacit mitigation call by bolstering spectral efficiency through simultaneous same frequency band transmission and reception. Conventionally, transceiver-based systems have their respective transmission and reception dictated by occurring in either disparate time slots (half-duplex) or distinct frequencies (out-of-band full-duplex). By achieving simultaneous same band communication, a theoretical doubling in spectral efficiency is rendered feasible. However, transmitter to receiver leakage, or self-interference (SI), remains the most barring frustration to IBFD realization. Being locally generated, SI is considerably stronger (often 50-100dB) than the desired signal-of-interest (SOI). Left unresolved, this unwanted energy saturates the receiver’s amplifiers and desensitizes its analog-to-digital converters. Thus, rendering the SOI unintelligible. Therefore, a means of self-interference cancellation (SIC) is necessitated to suppress any polluting SI to levels that of or below the receiver’s noise floor.</p><p></p>In this thesis an in-depth history of in-band full duplex technology is first presented, followed by a condensed examination of the SIC domains. Pertinent theory is presented pertaining to noise analysis and estimation relevant to a proposed IBFD transceiver architecture. Finally, a modelled simulation of this transceiver, developed in MATLAB, is presented. Subsequent results detailing an investigative study done on a fully adaptive tapped-branch analog self-interference canceller are shown. Said canceller’s variable phase and amplitude weights are set via real-time training using gradient descent algorithms. Evaluation of the results reveal marginal effect on the SIC efficacy due to transmission path nonlinearity and noise distortions alone. However, expansion of model consideration for conceivable cancellation hardware nonlinearities reveals an indirectly proportional degradation of SIC performance by up to 35dB as distortion levels vary from -80 dBm to -10 dBm. These results indicate consideration of such non-idealities should be an integral part of cancellation hardware design for the preclusion of any intrinsic cancellation impediments.
5

Difrakční jevy ve vysílaném optickém svazku / Diffraction Effects in Transmitted Optical Beam

Poliak, Juraj January 2014 (has links)
Dizertačná práca pojednáva o vlnových a elektromagnetických javoch, ku ktorým dochádza pri zatienení eliptického Gausovského zväzku kruhovou apretúrou. Najprv boli z Huygensovho-Fresnelovho princípu odvodené dva modely Fresnelovej difrakcie. Tieto modely poskytli nástroj pre zavedenie kontrastu difrakčného obrazca ako veličiny, ktorá kvantifikuje vplyv difrakčných javov na prevádzkové parametre optického spoja. Následne, pomocou nástrojov elektromagnetickej teórie svetla, boli odvodené štyri výrazy (dva presné a dva aproximatívne) popisujúce geometrický útlm optického spoja. Zároveň boli skúmané tri rôzne prípady odsmerovania zväzku - priečne posunutie a uhlové odsmerovanie vysielača, resp. prijímača. Bol odvodený výraz, ktorý tieto prípady kvantifikuje ako útlm elipticky symetrického Gausovského zväzku. Všetky vyššie uvedené modely boli overené v laboratórnych podmienkach, aby sa vylúčil vplyv iných javov. Nakoniec práca pojednáva o návrhu plne fotonického optického terminálu. Najprv bol ukázaný návrh optického vysielača nasledovaný vývojom optomechanickej sústavy prijímača. Pomocou nástrojov geometrickej a maticovej optiky boli vypočítané parametre spoja a odhad tolerancie pri zamierení spoja.
6

Traffic aware resource allocation for multi-antenna OFDM systems

Venkatraman, G. (Ganesh) 14 September 2018 (has links)
Abstract This thesis focuses on two important challenges in wireless downlink transmission: multi-user (MU) precoder design and scheduling of users over time, frequency, and spatial resources at any given instant. Data streams intended for different users are transmitted by a multiple-input multiple-output (MIMO) multi-antenna orthogonal frequency division multiplexing (OFDM) system. The transmit precoders are designed jointly across space-frequency resources to minimize the number of backlogged packets waiting at the coordinating base stations (BSs), thereby implicitly performing user scheduling. Then the problem of multicast beamformer design is considered wherein a subset of users belonging to a multicasting group are served by a common group-specific data. The design objective is to either minimize the transmit power for a guaranteed quality-of-service, or to maximize the minimum achievable rate among users for a given transmit power. Unlike existing techniques, the proposed design utilizes both the spatial and frequency resources jointly while designing multi-group beamformers. As an extension to coordinated precoding, the problem of beamformer design for cloud radio access network is considered wherein beamformers are designed centrally, quantized and sent along with data to the respective BSs via backhaul. Since the users can be served by multiple BSs, beamformer design becomes a nonconvex combinatorial problem. Unlike existing solutions, beamformer overhead is also included in the backhaul utilization along with the associated data. As the number of antennas increases, backhaul utilization is dominated by the beamformers. Thus, to reduce the overhead, two techniques are proposed: varying the quantization precision, and reducing the number of active antennas used for transmission. Finally, to reduce the complexity involved in the design of joint space- frequency approach, a two-step procedure is proposed, where a MU-MIMO scheduling algorithm is employed to find a subset of users for each scheduling block. The precoders are then designed only for the chosen users, thus reducing the complexity without compromising much on the throughput. In contrast to the null-space-based existing techniques, a low-complexity scheduling algorithm is proposed based on vector projections. The real-time performance of all the schedulers are evaluated by implementing them on both Xilinx ZYNQ-ZC702 system-on-chip (SoC) and TI TCI6636K2H multi-core SoC. / Tiivistelmä Tässä väitöskirjassa keskitytään kahteen tärkeään langattoman tiedonsiirron haasteeseen alalinkkilähetyksissä: usean käyttäjän (MU) esikooderisuunnitteluun ja käyttäjien skedulointiin aika-, taajuus- ja tilaresurssien yli. Eri käyttäjille tarkoitettuja datavirtoja lähetetään käyttämällä monitulo-monilähtötekniikkaa (MIMO) yhdistettynä monikantoaaltomodulointiin (OFDM). Lähettimien esikooderit suunnitellaan yhteisesti tila- ja taajuusresurssien yli, jotta keskenään yhteistoiminnallisten tukiasemien jonossa olevien pakettien määrää voitaisiin minimoida samalla kun tehdään epäsuorasti käyttäjien skedulointia. Tämän jälkeen työssä paneudutaan monilähetysten (multicast) keilanmuodostussuunnitteluun, jossa monilähetysryhmään kuuluvien käyttäjien alijoukolle lähetetään yhteistä ryhmäspesifistä dataa. Suunnittelun päämääränä on joko minimoida kokonaislähetysteho tietyllä palvelunlaatuvaatimuksella tai maksimoida pienin saavutettavissa oleva siirtonopeus käyttäjien joukossa tietyllä lähetysteholla. Toisin kuin olemassa olevat menetelmät, ehdotetussa mallissa käytetään yhteisesti sekä aika- että taajuusresursseja usean ryhmän keilanmuodostusta suunniteltaessa. Laajennuksena yhteistoiminnalliselle esikoodaukselle, väitöskirjassa käsitellään myös keilanmuodostusta pilvipohjaisessa radioliityntäverkkoarkkitehtuurissa. Keilanmuodostajat suunnitellaan keskitetysti, kvantisoidaan ja lähetetään datan mukana tukiasemille käyttäen runkoverkkoyhteyttä. Koska käyttäjiä voidaan palvella usealta tukiasemalta, keilanmuodostussuunnittelu muuttuu ei-konveksiksi kombinatoriseksi ongelmaksi. Toisin kuin olemassa olevissa ratkaisuissa, ehdotettu malli sisällyttää käyttäjien datan lisäksi keilanmuodostajien resursoinnin tarpeen runkoverkkoon. Tukiaseman antennien määrän lisääntyessä, keilanmuodostajien osuus runkoverkon käyttöasteesta kasvaa suureksi. Jotta keilanmuodostajien aiheuttamaa ylimääräistä tiedonsiirtotarvetta voitaisiin minimoida, esitellään kaksi tekniikkaa: kvantisointitarkkuuden muunteleminen sekä lähetykseen käytettävien aktiivisten antennien määrän vähentäminen. Lopuksi, jotta yhdistetyn tila-taajuussuunnittelun aiheuttamaa kompleksisuutta saataisiin vähennettyä, ehdotetaan kaksivaiheista menetelmää. MU-MIMO skedulointialgoritmin avulla etsitään ensin alijoukko käyttäjiä jokaiselle skedulointilohkolle. Esikooderit suunnitellaan vain valituille käyttäjille, mikä vähentää kompleksisuutta, heikentämättä suorituskykyä kuitenkaan olennaisesti. Poiketen nolla-avaruuteen perustuvista tekniikoista, esitetään yksinkertainen vektoriprojektioihin perustuva skeduleri. Kaikkien skedulerien reaaliaikasuorituskykyä on arvioitu toteuttamalla ne ohjelmoitavilla Xilinx ZYNQ-ZC702 system-on-chip (SoC) ja TI TCI6636K2H moniydinalustoilla.
7

Robust Precoder And Transceiver Optimization In Multiuser Multi-Antenna Systems

Ubaidulla, P 09 1900 (has links) (PDF)
The research reported in this thesis is concerned with robust precoder and transceiver optimization in multiuser multi-antenna wireless communication systems in the presence of imperfect channel state information(CSI). Precoding at the transmit side, which utilizes the CSI, can improve the system performance and simplify the receiver design. Transmit precoding is essential for inter-user interference cancellation in multiuser downlink where users do not cooperate. Linear and non-linear precoding have been widely investigated as low-complexity alternatives to dirty paper coding-based transmission scheme for multiuser multiple-input multiple-output(MU-MIMO)downlink. Similarly, in relay-assisted networks, precoding at the relay nodes have been shown to improve performance. The precoder and joint precoder/receive filter (transceiver) designs usually assume perfect knowledge of the CSI. In practical systems, however, the CSI will be imperfect due to estimation errors, feedback errors and feedback delays. Such imperfections in CSI will lead to deterioration of performance of the precoders/transceivers designed assuming perfect CSI. In such situations, designs which are robust to CSI errors are crucial to realize the potential of multiuser multi-antenna systems in practice. This thesis focuses on the robust designs of precoders and transceivers for MU-MIMO downlink, and for non-regenerative relay networks in the presence of errors in the CSI. We consider a norm-bounded error(NBE) model, and a stochastic error(SE) model for the CSI errors. These models are suitable for commonly encountered errors, and they allow mathematically and computationally tractable formulations for the robust designs. We adopt a statistically robust design in the case of stochastic error, and a minimax or worst-case robust design in the case of norm-bounded error. We have considered the robust precoder and transceiver designs under different performance criteria based on transmit power and quality-of-service(QoS) constraints. The work reported in this thesis can be grouped into three parts, namely,i ) robust linear pre-coder and transceiver designs for multiuser downlink, ii)robust non-linear precoder and transceiver designs for multiuser downlink, and iii)robust precoder designs for non-regenerative relay networks. Linear precoding: In this part, first, a robust precoder for multiuser multiple-input single-output(MU-MISO)downlink that minimizes the total base station(BS)transmit power with constraints on signal-to-interference-plus-noise ratio(SINR) at the user terminals is considered. We show that this problem can be reformulated as a second order cone program(SOCP) with the same order of computational complexity as that of the non-robust precoder design. Next, a robust design of linear transceiver for MU-MIMO downlink is developed. This design is based on the minimization of sum mean square error(SMSE) with a constraint on the total BS transmit power, and assumes that the error in the CSI at the transmitter(CSIT) follows the stochastic error model. For this design, an iterative algorithm based on the associated Karush-Kuhn-Tucker(KKT) conditions is proposed. Our numerical results demonstrate the robust performance of the propose designs. Non-linear precoding: In this part, we consider robust designs of Tomlinson-Harashima precoders(THP) for MU-MISO and MU-MIMO downlinks with different performance criteria and CSI error models. For MU-MISO systems with imperfect CSIT, we investigate the problem of designing robust THPs under MSE and total BS transmit power constraints. The first design is based on the minimization of total BS transmit power under constraints on the MSE at the individual user receivers. We present an iterative procedure to solve this problem, where each iteration involves the solution of a pair of convex optimization problems. The second design is based on the minimization of a stochastic function of the SMSE under a constraint on the total BS transmit power. We solve this problem efficiently by the method of alternating optimization. For MU-MIMO downlink, we propose robust THP transceiver designs that jointly optimize the TH precoder and receiver filters. We consider these transceiver designs under stochastic and norm-bounded error models for CSIT. For the SE model, we propose a minimum SMSE transceiver design. For the NBE model, we propose three robust designs, namely, minimum SMSE design, MSE-constrained design, and MSE-balancing design. Our proposed solutions to these robust design problems are based on iteratively solving a pair of sub-problems, one of which can be solved analytically, and the other can be formulated as a convex optimization problem that can be solved efficiently. Robust precoder designs for non-regenerative relay networks: In this part, we consider robust designs for two scenarios in the case of relay-assisted networks. First, we consider a non-regenerative relay network with a source-destination node pair assisted by multiple relay nodes, where each node is equipped with a single antenna. The set of the cooperating relay nodes can be considered as a distributed antenna array. For this scenario, we present a robust distributed beam former design that minimizes the total relay transmit power with a constraint on the SNR at the destination node. We show that this robust design problem can be reformulated as a semi-definite program (SDP)that can be solved efficiently. Next, we consider a non-regenerative relay network, where a set of source-destination node pairs are assisted by a MIMO-relay node, which is equipped with multiple transmit and multiple receive antennas. For this case, we consider robust designs in the presence of stochastic and norm-bounded CSI errors. We show that these problems can be reformulated as convex optimization problems. In the case of norm-bounded error, we use an approximate expression for the MSE in order to obtain a tractable solution.
8

Transceiver Design Based on the Minimum-Error-Probability Framework for Wireless Communication Systems

Dutta, Amit Kumar January 2015 (has links) (PDF)
Parameter estimation and signal detection are the two key components of a wireless communication system. They directly impact the bit-error-ratio (BER) performance of the system. Several criteria have been successfully applied for parameter estimation and signal detection. They include maximum likelihood (ML), maximum a-posteriori probability (MAP), least square (LS) and minimum mean square error (MMSE) etc. In the linear detection framework, linear MMSE (LMMSE) and LS are the most popular ones. Nevertheless, these criteria do not necessarily minimize the BER, which is one of the key aspect of any communication receiver design. Thus, minimization of BER is tantamount to an important design criterion for a wireless receiver, the minimum bit/symbol error ratio (MBER/MSER). We term this design criterion as the minimum-error-probability (MEP). In this thesis, parameter estimation and signal detection have been extensively studied based on the MEP framework for various unexplored scenar-ios of a wireless communication system. Thus, this thesis has two broad categories of explorations, first parameter estimation and then signal detection. Traditionally, the MEP criterion has been well studied in the context of the discrete signal detection in the last one decade, albeit we explore this framework for the continuous parameter es-timation. We first use this framework for channel estimation in a frequency flat fading single-input single-output (SISO) system and then extend this framework to the carrier frequency offset (CFO) estimation of multi-user MIMO OFDM system. We observe a reasonably good SNR improvement to the tune of 1 to 2.5 dB at a fixed BER (tentatively at 10−3). In this context, it is extended to the scenario of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) or MIMO-OFDM with pa-rameter estimation error statistics obtained from LMMSE only and checked its effect at the equalizer design using MEP and LMMSE criteria. In the second exploration of the MEP criterion, it is explored for signal detection in the context of MIMO-relay and MIMO systems. Various low complexity solutions are proposed to alleviate the effect of high computational complexity for the MIMO-relay. We also consider various configurations of relay like cognitive, parallel and multi-hop relaying. We also propose a data trans-mission scheme with a rate of 1/Ns (Ns is the number of antennas at the transmitter) with the help of the MEP criterion to design various components. In all these cases, we obtain considerable BER improvement compared to the existing solutions.
9

Coordinated beamforming in cellular and cognitive radio networks

Pennanen, H. (Harri) 08 September 2015 (has links)
Abstract This thesis focuses on the design of coordinated downlink beamforming techniques for wireless multi-cell multi-user multi-antenna systems. In particular, cellular and cognitive radio networks are considered. In general, coordinated beamforming schemes aim to improve system performance, especially at the cell-edge area, by controlling inter-cell interference. In this work, special emphasis is put on practical coordinated beamforming designs that can be implemented in a decentralized manner by relying on local channel state information (CSI) and low-rate backhaul signaling. The network design objective is the sum power minimization (SPMin) of base stations (BSs) while providing the guaranteed minimum rate for each user. Decentralized coordinated beamforming techniques are developed for cellular multi-user multiple-input single-output (MISO) systems. The proposed iterative algorithms are based on classical primal and dual decomposition methods. The SPMin problem is decomposed into two optimization levels, i.e., BS-specific subproblems for the beamforming design and a network-wide master problem for the inter-cell interference coordination. After the acquisition of local CSI, each BS can independently compute its transmit beamformers by solving the subproblem via standard convex optimization techniques. Interference coordination is managed by solving the master problem via a traditional subgradient method that requires scalar information exchange between the BSs. The algorithms make it possible to satisfy the user-specific rate constraints for any iteration. Hence, delay and signaling overhead can be reduced by limiting the number of performed iterations. In this respect, the proposed algorithms are applicable to practical implementations unlike most of the existing decentralized approaches. The numerical results demonstrate that the algorithms provide significant performance gains over zero-forcing beamforming strategies. Coordinated beamforming is also studied in cellular multi-user multiple-input multiple-output (MIMO) systems. The corresponding non-convex SPMin problem is divided into transmit and receive beamforming optimization steps that are alternately solved via successive convex approximation method and the linear minimum mean square error criterion, respectively, until the desired level of convergence is attained. In addition to centralized design, two decentralized primal decomposition-based algorithms are proposed wherein the transmit and receive beamforming designs are facilitated by a combination of pilot and backhaul signaling. The results show that the proposed MIMO algorithms notably outperform the MISO ones. Finally, cellular coordinated beamforming strategies are extended to multi-user MISO cognitive radio systems, where primary and secondary networks share the same spectrum. Here, network optimization is performed for the secondary system with additional interference constraints imposed for the primary users. Decentralized algorithms are proposed based on primal decomposition and an alternating direction method of multipliers. / Tiivistelmä Tämä väitöskirja keskittyy yhteistoiminnallisten keilanmuodostustekniikoiden suunnitteluun langattomissa monisolu- ja moniantennijärjestelmissä, erityisesti solukko- ja kognitiiviradioverkoissa. Yhteistoiminnalliset keilanmuodostustekniikat pyrkivät parantamaan verkkojen suorituskykyä kontrolloimalla monisoluhäiriötä, erityisesti tukiasemasolujen reuna-alueilla. Tässä työssä painotetaan erityisesti käytännöllisten yhteistoiminnallisten keilanmuodostustekniikoiden suunnittelua, joka voidaan toteuttaa hajautetusti perustuen paikalliseen kanavatietoon ja tukiasemien väliseen informaationvaihtoon. Verkon suunnittelutavoite on minimoida tukiasemien kokonaislähetysteho samalla, kun jokaiselle käyttäjälle taataan tietty vähimmäistiedonsiirtonopeus. Hajautettuja yhteistoiminnallisia keilanmuodostustekniikoita kehitetään moni-tulo yksi-lähtö -solukkoverkoille. Oletuksena on, että tukiasemat ovat varustettuja monilla lähetysantenneilla, kun taas päätelaitteissa on vain yksi vastaanotinantenni. Ehdotetut iteratiiviset algoritmit perustuvat klassisiin primaali- ja duaalihajotelmiin. Lähetystehon minimointiongelma hajotetaan kahteen optimointitasoon: tukiasemakohtaisiin aliongelmiin keilanmuodostusta varten ja verkkotason pääongelmaan monisoluhäiriön hallintaa varten. Paikallisen kanavatiedon hankkimisen jälkeen jokainen tukiasema laskee itsenäisesti lähetyskeilansa ratkaisemalla aliongelmansa käyttäen apunaan standardeja konveksioptimointitekniikoita. Monisoluhäiriötä kontrolloidaan ratkaisemalla pääongelma käyttäen perinteistä aligradienttimenetelmää. Tämä vaatii tukiasemien välistä informaationvaihtoa. Ehdotetut algoritmit takaavat käyttäjäkohtaiset tiedonsiirtonopeustavoitteet jokaisella iterointikierroksella. Tämä mahdollistaa viiveen pienentämisen ja tukiasemien välisen informaatiovaihdon kontrolloimisen. Tästä syystä ehdotetut algoritmit soveltuvat käytännön toteutuksiin toisin kuin useimmat aiemmin ehdotetut hajautetut algoritmit. Numeeriset tulokset osoittavat, että väitöskirjassa ehdotetut algoritmit tuovat merkittävää verkon suorituskyvyn parannusta verrattaessa aiempiin nollaanpakotus -menetelmiin. Yhteistoiminnallista keilanmuodostusta tutkitaan myös moni-tulo moni-lähtö -solukkoverkoissa, joissa tukiasemat sekä päätelaitteet ovat varustettuja monilla antenneilla. Tällaisessa verkossa lähetystehon minimointiongelma on ei-konveksi. Optimointiongelma jaetaan lähetys- ja vastaanottokeilanmuodostukseen, jotka toistetaan vuorotellen, kunnes algoritmi konvergoituu. Lähetyskeilanmuodostusongelma ratkaistaan peräkkäisillä konvekseilla approksimaatioilla. Vastaanottimen keilanmuodostus toteutetaan summaneliövirheen minimoinnin kautta. Keskitetyn algoritmin lisäksi tässä työssä kehitetään myös kaksi hajautettua algoritmia, jotka perustuvat primaalihajotelmaan. Hajautettua toteutusta helpotetaan pilottisignaloinnilla ja tukiasemien välisellä informaationvaihdolla. Numeeriset tulokset osoittavat, että moni-tulo moni-lähtö -tekniikoilla on merkittävästi parempi suorituskyky kuin moni-tulo yksi-lähtö -tekniikoilla. Lopuksi yhteistoiminnallista keilanmuodostusta tarkastellaan kognitiiviradioverkoissa, joissa primaari- ja sekundaarijärjestelmät jakavat saman taajuuskaistan. Lähetystehon optimointi suoritetaan sekundaariverkolle samalla minimoiden primaarikäyttäjille aiheuttamaa häiriötä. Väitöskirjassa kehitetään kaksi hajautettua algoritmia, joista toinen perustuu primaalihajotelmaan ja toinen kerrointen vaihtelevan suunnan menetelmään.

Page generated in 0.0516 seconds