Spelling suggestions: "subject:"transcriptional regulation"" "subject:"ranscriptional regulation""
201 |
USING SYSTEMS BIOLOGY APPROACHES TO UNDERSTAND THE TRANSCRIPTIONAL REGULATION UNDERLYING PLANT DEFENSE AND GROWTHLiang Tang (14226836) 06 December 2022 (has links)
<p> </p>
<p>Plant complex traits are controlled by multi-layer of dynamic and complicated gene networks regulated at different levels. To better inform crop breeding to promote desired traits, a comprehensive and fundamental understanding of their genetic basis is much needed. With the rapid developments of <em>omics</em> planforms and next generation sequencing technology, we now have large-scale data from genome, epigenome, transcriptome, metabolome, and others for the crop plants. Integration of those multiple <em>omics</em> data together with computational approaches led to the establishment of a novel science known as system biology. Research described in this thesis used system biology approaches to dissect complex crop traits such as disease response of tomato (Chapter2 and Chapter3) and the heterosis of nitrogen use efficiency of maize (Chapter4).</p>
<p>Plant disease response is an elaborate, multilayered complex trait involving several lines of defense signaling. In the past decades, progress in molecular analyses of plant immune system has revealed key elements of a complex response network in Arabidopsis, a model species. Histone modifications, a type of epigenetic regulation, have emerged as key modulators that regulate defense responses, while our understanding of the role of histone-modifying enzymes in this process is still in its infancy. Here, we described the immune function of two histone methyltransferases SDG33 and SDG34 in tomato. We found the single mutants in <em>sdg33</em> and <em>sdg34</em> showed increased susceptibility to hemibiotrophic bacterial pathogen <em>Pseudomonas syringae</em> whereas the double mutant <em>sdg33sdg34</em> is comparable to wild type. Using RNA-seq and histone ChIP-seq approaches, we investigated the possible underlying mechanisms and found that the expression of a set of immune-related genes is misregulated by <em>P. syringae</em> only in the single mutants but not in the double mutant. Integrating with epigenomic data, we found that the misexpression of those SDG33/SDG34 dependent immune-response genes was associated with altered histone methylation status in the single mutant. Intriguingly, the double mutant also showed altered histone methylation but unaffected gene expression, suggesting a compensating regulatory mechanism at play. The function of SDG33 and SDG34 in immune response seems to be specific for the pathogen, as the double mutants exhibited enhanced resistance the single mutants showed no altered responses when treated with necrotrophic fungal pathogen <em>Botrytis cinerea</em>. Network analysis found the most regulatory gene by <em>B. cinerea</em> in a SDG33/SDG34 dependent manner have been implicated in biotic stress response such as <em>ERF4, TOPLESS, PUB23 </em>and<em> RCD1</em>. Comparing the immune response of double mutant against <em>P. syringae</em> and <em>B. cinerea</em>, we found that the disease related genes are only mis-regulated in the interaction of <em>B. cinerea</em> treatment not in the <em>P. syringae</em> treatment, which could be the reason of enhanced resistance to <em>B. cinerea</em> but not for <em>P. syringae</em> in the double mutants. In summary, we found the histone methyltransferases SDG33 and SDG34 has different functions in the immune response against <em>P. syringae</em> and <em>B. cinerea</em>, which might be direct or indirect relevant to the histone methylation level of the expression of downstream immune related gene.</p>
<p>In addition to biotic stress, another complex trait studied in this thesis is the heterosis of nitrogen use efficiency (NUE) in Maize. NUE is another complex trait associated with multiple physiological processes including N sensing, uptake, assimilation, transport, and storage. Heterosis refers to a phenomenon where the progeny generated by crossing two different cultivars of the same species exhibit superior fitness than the inbred parents. Even though, heterosis has been exploited to improve complex traits including NUE, the underlying molecular mechanisms is not completely understood. Here, we analyzed N-responsive transcriptomes and physiological traits of a panel of six maize hybrids and their corresponding inbreds grown in the field at two different N levels. We observed diverse levels of trait heterosis that are dependent on the N conditions and organ types. We discovered dramatic pattern shift of beyond-parental-range gene expression in hybrids in response to varying N levels. We identified through integrative analyses a set of genes whose expression heterosis are quantitatively correlated to trait heterosis. These genes are involved in response to stimulus, photosynthesis, and N metabolism, and likely mediate the heterosis phenotype of N-use and growth traits in maize. In summary, our integrated analysis provided insights into the mechanistic basis of the heterosis of NUE. </p>
<p>Together, applying systems and functional genomics approaches to investigate important agricultural traits could lead to a comprehensive understanding of plant complex traits to inform future engineering and breeding for better crops.</p>
|
202 |
MECHANISMS OF TRANSCRIPTIONAL REGULATION: GENE REPRESSION BY KRAB ZINC FINGER PROTEINS AND GENE INDUCTION BY ESTROGEN RECEPTOR betaSripathy, Smitha P. January 2009 (has links)
No description available.
|
203 |
MOLECULAR MECHANISMS OF SYNERGISTIC TRANSCRIPTIONAL REGULATION OF INDOLEAMINE 2,3-DIOXYGENASERobinson, Cory Michael 02 August 2004 (has links)
No description available.
|
204 |
Characterization of the Building Blocks of the Maize Gene Regulatory GridMejia Guerra, Maria Katherine January 2015 (has links)
No description available.
|
205 |
Regulation of the human neuronal nitric oxide synthase gene via alternate promotersHartt, Gregory Thomas 15 October 2003 (has links)
No description available.
|
206 |
ROLE OF THE MAIZE TRANSCRIPTION FACTOR R IN THE REGULATION OF ANTHOCYANIN BIOSYNTHESISFeller, Antje Christin 02 September 2010 (has links)
No description available.
|
207 |
Molecular functions of the transcriptional regulator AP-2 alpha (TFAP2A) in the renal collecting ductLeiz, Janna 26 June 2023 (has links)
Tfap2a gehört zur Familie der AP-2-Transkriptionsfaktoren. Heterozygote Mutationen von TFAP2A im Menschen führen zum Branchio-Okulo-Fazialen-Syndrom (BOFS) und sind mit Nierenanomalien assoziiert. Molekulare Mechanismen, die zu diesen BOFS-assoziierten Nierenanomalien führen, sind noch unbekannt.
In diesem Projekt wurde die Expression von Mitgliedern der AP-2-Familie in neugeborenen und erwachsenen Wildtyp-Mäusen analysiert. Tfap2a wurde in der Ureterknospe und der distalen Region des S-förmigen Körpers in den Nieren neugeborener Mäuse exprimiert. Die Expression blieb in ausgereiften distalen Tubuli und Sammelrohren erhalten. Tfap2b, ein zweites Mitglied der AP-2-Familie, das in der Niere exprimiert wird und mit Zystenbildung assoziiert ist, wurde im aufsteigenden Ast der Henleschen Schleife sowie in den distalen Tubuli und dem in der Nierenrinde liegenden Sammelrohr exprimiert.
Um die Rolle von Tfap2a in der Niere zu untersuchen, wurden Mäuse mit einer sammelrohrspezifischen Deletion von Tfap2a (Tfap2a-KO) erzeugt.
Phänotypische und morphologische Analysen ergaben, dass Tfap2a-KO-Mäuse mäßig reduzierte Nierengewichte und eine fortschreitende Dilatation der äußeren medullären Sammelrohre aufwiesen.
Einzelkern- und RNA-Sequenzierung der Nieren adulter Mäuse zeigte eine deregulierte Expression von Genen, die mit der Organisation von Aktinfilamenten, Zelladhäsion, Wnt-Signalen und anderen Signalwegen der Nierenentwicklung in Verbindung stehen. In einem isolierten Modell von kultivierten Sammelrohrzellen mit einer Deletion von Tfap2a waren ähnliche Signalwege dereguliert.
Insgesamt deutet diese Studie darauf hin, dass Tfap2a für die Differenzierung des Sammelrohrepithels und die Regulierung des Durchmessers des Tubuluslumens erforderlich ist. Dies ermöglicht Einblicke in die molekularen Grundlagen der beim BOFS beobachteten Nierenfehlbildungen. / The transcriptional regulator Tfap2a is part of the AP-2 transcription factor family. Heterozygous mutations of TFAP2A in humans lead to branchio-oculo-facial syndrome (BOFS) and are associated with renal anomalies. Molecular mechanisms leading to BOFS-associated renal anomalies are still unknown.
In this project, expression patterns of AP-2 family members were analyzed in newborn and adult wildtype mice. Tfap2a was expressed in the ureteric bud and distal region of the S-shaped body in kidneys of newborn mice. Expression was maintained in mature distal tubules and collecting ducts. Tfap2b, a second AP-2 family member expressed in the kidney and associated with cyst formation, was found in the ascending limb and showed overlapping expression with Tfap2a in distal tubules and the cortical collecting duct.
To investigate the role of Tfap2a in the kidney, mice with a collecting duct-specific deletion of Tfap2a (Tfap2a-KO) were generated by crossing mice carrying a Cre-recombinase under the Hoxb7 promotor and mice with floxed Tfap2a alleles.
Phenotypic and morphological analyses revealed that Tfap2a-KO mice displayed moderately reduced kidney weights and a progressive dilation of outer medullary collecting ducts.
Single-nucleus and bulk RNA sequencing of kidneys of three months old Tfap2a-KO mice and littermate controls indicated deregulated expression of genes associated with actin filament organization, cell adhesion, Wnt signaling, and other kidney developmental pathways. Genes deregulated in Tfap2a-deficient mice included several genes previously implicated in the development of congenital anomalies of the kidney and urinary tract. In an isolated model of cultured collecting duct cells carrying a Tfap2a knockout similar pathways were deregulated.
Taking together, this study indicates that Tfap2a is required for collecting duct epithelium differentiation and tubular lumen diameter regulation, providing insights into the molecular basis of renal defects observed in BOFS.
|
208 |
Biased Evolution : Causes and ConsequencesBrandis, Gerrit January 2016 (has links)
In evolution alternative genetic trajectories can potentially lead to similar phenotypic outcomes. However, certain trajectories are preferred over others. These preferences bias the genomes of living organisms and the underlying processes can be observed in ongoing evolution. We have studied a variety of biases that can be found in bacterial chromosomes and determined the selective causes and functional consequences for the cell. We have quantified codon usage bias in highly expressed genes and shown that it is selected to optimise translational speed. We further demonstrated that the resulting differences in decoding speed can be used to regulate gene expression, and that the use of ‘non-optimal’ codons can be detrimental to reading frame maintenance. Biased gene location on the chromosome favours recombination between genes within gene families and leads to co-evolution. We have shown that such recombinational events can protect these gene families from inactivation by mobile genetic elements, and that chromosome organization can be selectively maintained because inversions can lead to the formation of unstable hybrid operons. We have used the development of antibiotic resistance to study how different bacterial lifestyles influence evolutionary trajectories. For this we used two distinct pairs of antibiotics and disease-causing bacteria, namely (i) Mycobacterium tuberculosis that is treated with rifampicin and (ii) Escherichia coli that is treated with ciprofloxacin. We have shown that in the slow-growing Mycobacterium tuberculosis, resistance mutations are selected for high-level resistance. Fitness is initially less important, and over time fitness costs can be ameliorated by compensatory mutations. The need for rapid growth causes the selection of ciprofloxacin resistance in Escherichia coli not only to be selected on the basis of high-level resistance but also on high fitness. Compensatory evolution is therefore not required and is not observed. Taken together, our results show that the evolution of a phenotype is the product of multiple steps and that many factors influence which trajectory is the most likely to occur and be most beneficial. Over time, selection will favour this particular trajectory and lead to biased evolution, affecting genome sequence and organization.
|
209 |
A proteome-wide strategy reveals a novel mechanism of control of cell cycle progression through modulation of cyclin mRNA stabilityMessier, Vincent 01 1900 (has links)
La quantité de données générée dans le cadre d'étude à grande échelle du réseau d'interaction protéine-protéine dépasse notre capacité à les analyser et à comprendre leur sens; d'une part, par leur complexité et leur volume, et d'un autre part, par la qualité du jeu de donnée produit qui semble bondé de faux positifs et de faux négatifs. Cette dissertation décrit une nouvelle méthode de criblage des interactions physique entre protéines à haut débit chez Saccharomyces cerevisiae, la complémentation de fragments protéiques (PCA). Cette approche est accomplie dans des cellules intactes dans les conditions natives des protéines; sous leur promoteur endogène et dans le respect des contextes de modifications post-traductionnelles et de localisations subcellulaires. Une application biologique de cette méthode a permis de démontrer la capacité de ce système rapporteur à répondre aux questions d'adaptation cellulaire à des stress, comme la famine en nutriments et un traitement à une drogue.
Dans le premier chapitre de cette dissertation, nous avons présenté un criblage des paires d'interactions entre les protéines résultant des quelques 6000 cadres de lecture de Saccharomyces cerevisiae. Nous avons identifié 2770 interactions entre 1124 protéines. Nous avons estimé la qualité de notre criblage en le comparant à d'autres banques d'interaction. Nous avons réalisé que la majorité de nos interactions sont nouvelles, alors que le chevauchement avec les données des autres méthodes est large. Nous avons pris cette opportunité pour caractériser les facteurs déterminants dans la détection d'une interaction par PCA. Nous avons remarqué que notre approche est sous une contrainte stérique provenant de la nécessité des fragments rapporteurs à pouvoir se rejoindre dans l'espace cellulaire afin de récupérer l'activité observable de la sonde d'interaction. L'intégration de nos résultats aux connaissances des dynamiques de régulations génétiques et des modifications protéiques nous dirigera vers une meilleure compréhension des processus cellulaires complexes orchestrés aux niveaux moléculaires et structuraux dans les cellules vivantes.
Nous avons appliqué notre méthode aux réarrangements dynamiques opérant durant l'adaptation de la cellule à des stress, comme la famine en nutriments et le traitement à une drogue. Cette investigation fait le détail de notre second chapitre. Nous avons déterminé de cette manière que l'équilibre entre les formes phosphorylées et déphosphorylées de l'arginine méthyltransférase de Saccharomyces cerevisiae, Hmt1, régulait du même coup sont assemblage en hexamère et son activité enzymatique. L'activité d'Hmt1 a directement un impact dans la progression du cycle cellulaire durant un stress, stabilisant les transcrits de CLB2 et permettant la synthèse de Cln3p. Nous avons utilisé notre criblage afin de déterminer les régulateurs de la phosphorylation d'Hmt1 dans un contexte de traitement à la rapamycin, un inhibiteur de la kinase cible de la rapamycin (TOR). Nous avons identifié la sous-unité catalytique de la phosphatase PP2a, Pph22, activé par l'inhibition de la kinase TOR et la kinase Dbf2, activé durant l'entrée en mitose de la cellule, comme la phosphatase et la kinase responsable de la modification d'Hmt1 et de ses fonctions de régulations dans le cycle cellulaire. Cette approche peut être généralisée afin d'identifier et de lier mécanistiquement les gènes, incluant ceux n'ayant aucune fonction connue, à tout processus cellulaire, comme les mécanismes régulant l'ARNm. / The quantity of data generated within the framework of protein-protein interaction network large-scale studies exceeds our capacity to analyze them and to understand their meaning; on one hand, by their complexity and their number, and on the other hand, by the quality of the produced data, which are populated with spurious interactions. This dissertation describes new applications of a protein-fragments complementation assay (PCA) to screen for interactions among all proteins in the budding yeast Saccharomyces cerevisiae. This approach is carried out in intact cells, with proteins expressed in their native contexts and under their endogenous promoter, thus assuring correct post-translational modifications and subcellular localization. A further novel application of PCA is described for investigating proteome wide changes in response to cellular adaptation to stresses, such as nutrient starvations and drug treatments. Finally, as a result of the latter strategy applied to characterizing proteome-wide response to the immunosuppressant drug, rapamycin, I describe the discovery of an unforeseen mechanism of modulating cell cycle progression through control of cyclin mRNA stability.
In the first chapter of this dissertation, I present a pairwise screen of interactions among proteins resulting from the ~6000 open reading frames in Saccharomyces cerevisiae. We identified 2770 interactions among 1124 proteins. We estimated the quality of our screen by comparing our results to curated gold standard data and coverage of known interactions to all previous studies. The majority of our interactions were novel, but overlap with data from previous studies was as high as 40%. PCA is based on refolding of the reporter protein from complementary N- and C- terminal fragments following interaction of the two proteins to which they are fused. Thus, reporter activity is sterrically limited to interactions in which the termini of the proteins to which the complementary reporter fragments are fused are sufficiently close in space. In the case of our reporter, this limit was 8 nm. Thus PCA is a molecular ruler, providing information on both direct protein-protein interactions and sterrically restricted distances between proteins in complexes. We benchmarked and demonstrated correct topological relationships for a number of known complexes, including the proteasome, RNA polymerase II and the nuclear pore complex. Thus our study provided, for the first time, a topological map of complex organization in a living cell. The integration of the results from such efforts with those of gene regulation dynamics and protein modifications will lead to a fuller understanding of how complex cellular processes are orchestrated at a molecular and structural level in the living cell.
In chapter 2, I describe the results of an application of PCA to study the dynamic rearrangement of the proteome under a specific stress; treatment of cells with rapamycin. The results of these efforts were the identification of a novel mechanism of cell cycle control at the level of cyclin mRNA. Specifically, we discovered that the balance between the phosphorylated and dephosphorylated forms of the Saccharomyces cerevisiae arginine methyltransferase, Hmt1, regulates both its assembly into a hexamer and its enzymatic activity. The Hmt1 activity modulates cell cycle progression through stabilizing the B cyclin CLB2 mRNA. We then used PCA to identify the Hmt1 regulators under rapamycin treatment. We identified the catalytic subunit of the PP2a phosphatase, Pph22, activated by the inhibition of TOR, and the kinase Dbf2, activated during entry into mitosis, as the phosphatase and the kinase responsible for the modification of Hmt1 and for its regulatory functions in the cell cycle.
I thus, in the end close the circle I began in this summary, going from large-scale discovery of protein-protein interactions, to mapping dynamics of proteome changes during an adaptation and finally to mechanistic insight into a primordial control mechanism in cellular dynamics. The strategies that we devised to discover this mechanism can be generalized to identify and mechanistically link genes together, including those of unknown function, to any cellular process.
|
210 |
L'acide cinnamique régule l'expression post-transcriptionnellede la cyclooxygénase-2 / Cinnamic acid prevents 12-phorbol myristate 13-acetate-induced post-transcriptional regulation of cyclooxygenase-2-expressionLegrand, Noémie 29 November 2012 (has links)
L'inflammation est considérée comme un promoteur de la cancérogenèse. La cyclooxygénase-2 (COX-2), la forme inductible de la famille des cyclooxygénases est un médiateur important de l'inflammation. Cette enzyme est constitutivement exprimée dans un grand nombre de cancers tels que les cancers du sein, du colon ou de la prostate. De nombreuses études mettent en évidence que COX-2 est surexprimée lors des étapes pré-néoplasiques. La COX-2 représente de ce fait une cible thérapeutique potentielle en chimioprévention et également pour le traitement des cancers. L'utilisation d'inhibiteurs synthétiques de COX-2 qui ciblent l'activité enzymatique est le seul traitement clinique actuellement disponible pour réduire l'activité de COX-2. Cependant, ces agents présentent des effets secondaires sévères, ce qui limite leur prise chronique chimiopréventives ou au cours des traitements anti-cancéreux. Une stratégie alternative pour cibler la fonction de COX-2 est d'inhiber son expression. Un grand nombre d'études montrent que certains produits naturels (la curcumine, le resveratrol ou l'apigénine par exemple) inhibent, préférentiellement l'expression de COX-2, sans être toxique. Notre projet analyse l'effet de l'acide cinnamique, un produit naturel extrait de la plante Cinnamonium cassia, sur l'expression de COX-2 au cours de la cancérogenèse dans le but d'évaluer son intérêt en chimioprévention. Nous avons utilisé comme modèle les cellules mammaires non carcinogènes, MCF10A stimulées avec un ester de phorbol, le 12-phorbol myristate 13-acetate (PMA), qui induit l'expression de COX-2. Nous avons observé une diminution de l'expression de COX-2 au niveau de l'ARNm et de la protéine après le traitement avec différentes concentrations d'acide cinnamique (1 et 10μM). L'analyse des mécanismes impliqués dans la diminution de l'expression de COX-2 a mis en évidence que l'acide cinnamique régule l'expression de COX-2 de façon post-transcriptionnelle en réduisant la stabilité de son ARNm. Cet effet est associé à une prévention de la diminution de l'expression de microARN (miR)-16 et une inhibition de l'expression de p38 induite par l'acide cinnamique en réponse au traitement avec le PMA. / Inflammation is considered a cancer-promoting factor. Cyclooxygenase-2 (COX-2), the inducible form of the family of cyclooxygenases is an important mediator of inflammation, which has been found constitutively expressed in many forms of cancer including breast, colon or prostate. A number of studies show that COX-2 is stably expressed since the early pre-neoplastic stages. This encourages us to consider COX-2 as a potential target in chemoprevention as well as in the treatment of cancer. Synthetic inhibitors of COX-2, which target enzymatic activity, are the only clinical strategy to counteract COX-2. However, these compounds present severe side effects, a fact that limits their prolonged intake, like requested in chemoprevention or during anti-cancer treatment.An alternative strategy to target COX-2 is at the level of its expression. A number of studies show that several natural compounds including curcumin, resveratrol or apigenin preferentially target COX-2 expression without showing toxicity.Our study analyses the effect of cinnamic acid, a natural compound derived from Cinnamonium cassia on COX-2 expression during carcinogenesis, with the final aim to evaluate its potential in chemoprevention/therapy.For our chemopreventive purposes, we used the non-carcinogenic breast cell line MCF10A, stimulated by the phorbol ester 12-phorbol myristate 13-acetate (PMA), which typically induces COX-2. We show a reduction of induced COX-2 expression after treatment with different concentrations of cinnamic acid (1 and 10μM). The analysis of the mechanisms involved in COX-2 protein expression decrease shows that cinnamic acid regulated COX-2 expression at the post-transcriptional level by reducing COX-2 mRNA stability. This effect is associated with the ability of cinnamic acid to prevent downregulation of miR-16 expression and p38 activation in response to PMA treatment.
|
Page generated in 0.1186 seconds