• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transições de fase do modelo de Foraging e difusão anômala

ARAÚJO, Hugo de Andrade 07 February 2013 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-06-14T13:27:03Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Hugo_Andrade_Doutorado.pdf: 3065927 bytes, checksum: 2eeb9c1ecb93e60c146992117b01cbb6 (MD5) / Made available in DSpace on 2016-06-14T13:27:03Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Hugo_Andrade_Doutorado.pdf: 3065927 bytes, checksum: 2eeb9c1ecb93e60c146992117b01cbb6 (MD5) Previous issue date: 2013-02-07 / CNPq / Nesta Dissertac¸ ˜ao estudamos a dinˆamica energ´etica das buscas aleat ´orias aplicadas ao problema de foraging, em que animais buscam por comida ou parceiros em ambientes escassos. Discutiremos, inicialmente, um modelo estat´ıstico de caminhadas aleat ´orias utilizando as distribuic¸ ˜oes de L´evy para os tamanhos dos passos de busca, as quais tˆem sido reportadas na literatura como estrat´egias de eficiˆencia ´otima para o problema. Em seguida vamos incluir no modelo ganhos e perdas de energia na caminhada aleat ´ oria de busca, e abordaremos a dinˆamica energ´etica do processo de busca unidimensional com extremos absorventes. Vamos discutir a transic¸ ˜ao de fase que o buscador experimenta de um estado ativo (“vivo”), t´ıpico de ambientes com abundˆancia de recursos, para um estado est´atico absorvente (“morto”), onde a busca ´e encerrada pela falta de energia oriunda do encontro de recursos. Obteremos os expoentes cr´ıticos relativos a essa transic¸ ˜ao atrav´es de abordagens te ´ oricas, tais como o m´etodo de primeira passagem para o estado de energia nula, e num´ericas, baseadas na hip´otese de escala. Mostraremos a independˆencia destes expoentes com a forma funcional da func¸ ˜ao gasto de energia. Por fim, faremos uma breve revis˜ao da literatura sobre a equac¸ ˜ao de Fokker-Planck canˆonica e tamb´em sobre as suas vers˜oes utilizando derivadas fracion´arias, numa prepararac¸ ˜ao para uma futura abordagem, durante o programa de Doutorado, do problema da busca aleat´oria envolvendo difus˜oes anˆomalas (por exemplo, superdifus˜ao) via equac¸ ˜oes diferenciais. / In this work we study the energy dynamics of random searches applied to the foraging problem, in which animals search for food or mates in scarce environments. Firstly, we discuss a statistical model of random search walks using the L´evy distribution of step lengths, which has been reported in the literature as an optimal solution to the problem. In the sequence we include in the model energy gains and losses during the search walk, and discuss the energy dynamics of the search process in a one dimensional space with absorbing boundaries. We discuss the phase transition that the searcher experiences from an active (“alive”) state, typical of environments abundant in resources, to a static absorbed (“dead”) one, in which the search is terminated due to the lack of energy obtained from the encounters.We obtain the critical exponents for this transition through both theoretical (such as the first-passage method to the state of zero energy) and numerical approaches, based on the scale hypothesis.We show the independence of the exponents with the functional form of the energy cost. Finally, we provide a brief review of the literature on the canonical Fokker-Planck equation and also on its version using fractional derivatives, in a preparation for a future approach of the random search problem involving anomalous diffusion (e.g., superdiffusion) through differential equations during the Ph.D. program.

Page generated in 0.073 seconds