• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1097
  • 903
  • 229
  • 101
  • 83
  • 71
  • 65
  • 42
  • 40
  • 32
  • 20
  • 11
  • 11
  • 11
  • 11
  • Tagged with
  • 2953
  • 1022
  • 661
  • 578
  • 398
  • 387
  • 361
  • 345
  • 275
  • 251
  • 220
  • 213
  • 203
  • 202
  • 200
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Innovations in stem cell transplantation and transfusion. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2001 (has links)
Lau Fung Yi. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 107-130). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
262

Flow conductane property of cancellous bone graft and its effect on bone incorporation.

January 1994 (has links)
by Pang Sai Yau. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves [87-90]). / Chapter chapter one: --- introduction / Chapter 1.1 --- General Introduction --- p.1 / Chapter 1.2 --- biology of cancellous bone grafts --- p.2 / Chapter 1.2.1 --- Biology of bone graft incorporation --- p.2 / Chapter 1.2.1.1 --- Osteogenesis --- p.2 / Chapter 1.2.1.2 --- Vascularization --- p.3 / Chapter 1.2.1.3 --- Osteoinduction --- p.3 / Chapter 1.2.1.4 --- Osteoconduction --- p.4 / Chapter 1.2.2 --- Histological changes of bone grafts after bone transplantation --- p.4 / Chapter 1.2.2.1 --- Histologic pictures of cancellous autograft --- p.4 / Chapter 1.2.2.2 --- Histologic pictures of cancellous bone allograft --- p.5 / Chapter 1.2.2.3 --- Summary of the histologic changes of bone grafts --- p.5 / Chapter 1.3 --- application of cancellous bone grafts --- p.6 / Chapter 1.3.1 --- Principles of graft incorporation --- p.6 / Chapter 1.3.1.1 --- Operative site --- p.6 / Chapter 1.3.1.2 --- Graft material --- p.7 / Chapter 1.3.1.2.1 --- Autogenic cancellous bone --- p.8 / Chapter 1.3.1.2.2 --- Autogenic cortical bone --- p.9 / Chapter 1.3.2.2.3 --- Vascularized autogenic bone grafts --- p.9 / Chapter 1.3.2.2.4 --- Bone allografts --- p.10 / Chapter 1.3.2.2.5 --- Graft adjuncts and substitutes --- p.11 / Chapter 1.3.2.3 --- Systemic factors influencing gaft incorporation --- p.13 / Chapter 1.3.2.4 --- Local factors influencing graft incorporation --- p.13 / Chapter 1.3.3 --- Bone graft complications --- p.13 / Chapter 1.3.4 --- Placement of a graft --- p.14 / Chapter 1.3.5 --- Bone graft harvesting --- p.15 / Chapter 1.3.5.1 --- Iliac bone graft --- p.15 / Chapter 1.3.5.2 --- Femoral head bone allograft --- p.16 / Chapter 1.4 --- Application of flow conductance concept in a cancellous bone graft --- p.17 / Chapter 1.4.1 --- Physical structure of cancellous bone --- p.17 / Chapter 1.4.2 --- Porosity of cancellous bone --- p.17 / Chapter 1.4.3 --- Flow conductance concept --- p.18 / Chapter chapter two: --- material and method / Chapter 2.1 --- Transplantation of cancellous bone graft - Rabbit model --- p.19 / Chapter 2.1.1 --- Preparation of porcine cancellous bone graft --- p.19 / Chapter 2.1.1.1 --- Bone drilling --- p.19 / Chapter 2.1.1.2 --- Defat and freeze-dry --- p.20 / Chapter 2.1.2 --- Flow conductance measurement --- p.21 / Chapter 2.1.2.1 --- Porosity measurement --- p.21 / Chapter 2.1.2.2 --- Conductance measurement --- p.24 / Chapter 2.1.3 --- Rabbit model --- p.26 / Chapter 2.1.4 --- Methods of assessment --- p.29 / Chapter 2.1.4.1 --- Intraosseous pressure measurement --- p.29 / Chapter 2.1.4.2 --- Histologic study --- p.30 / Chapter 2.1.4.3 --- Blood flow study - use of tracer microspheres --- p.30 / Chapter 2.2 --- Flow conductance measurement of human cancellous bone --- p.34 / Chapter chapter three: --- results / Chapter 3.1 --- Results of the effects of various conductance of the grafts on bone healing in animal model --- p.38 / Chapter 3.1.1 --- Intraosseous pressure measurement --- p.38 / Chapter 3.1.2 --- Histological study --- p.40 / Chapter 3.1.3 --- Blood flow study of cancellous bone grafts --- p.52 / Chapter 3.2 --- Human specimens study --- p.62 / Chapter chapter four: --- discussion / Chapter 4.1 --- Discussion of the results in vivo study --- p.66 / Chapter 4.1.1 --- Intraosseous pressure measurement - a baseline study --- p.66 / Chapter 4.1.2 --- Effects of flow conductance of porcine cancellous grafts on bone regeneration --- p.67 / Chapter 4.1.2.1. --- Threshold conductance --- p.67 / Chapter 4.1.2.2. --- Histological score --- p.68 / Chapter 4.1.3 --- Discussion of graft healing from the blood flow study --- p.70 / Chapter 4.1.3.1 --- Tibia blood supply in relation to bone healing --- p.70 / Chapter 4.1.3.2 --- Effect of different flow conductance on blood flow changes in the tibia-graft structure --- p.72 / Chapter 4.1.4 --- "Comparison of length, porosity and conductance as the parameter on graft healing" --- p.74 / Chapter 4.2 --- Discussion on human bone specimens study --- p.76 / Chapter 4.3 --- General discussion --- p.78 / Chapter 4.3.1 --- The limitation of the animal model --- p.78 / Chapter 4.3.2 --- Some problems related to the clinical aspects --- p.79 / Chapter chapter five: --- conclusion --- p.81
263

The Search of an ideal implant for peritrochanteric fractures: a comparative study of dynamic hip screw and gamma nail.

January 1991 (has links)
by Leung Kwok-sui. / Thesis (M.D.)--Chinese University of Hong Kong, 1991. / Bibliography: leaves 112-121. / ACKNOWLEDGEMENTS --- p.iii / ABSTRACT --- p.v / LIST OF FIGURES --- p.xi / LIST OF TABLES --- p.xvii / CHAPTER / Chapter I --- Introduction --- p.1 / Chapter II --- The Evolution of the Fixation Devices for Peritrochanteric Fractures --- p.13 / Chapter II.1 --- Patho-anatomy and Biomechanics of Peritrochanteric Fractures --- p.14 / Chapter II.2 --- A Review of the Implants Available for Peritrochanteric Fractures --- p.19 / Chapter III --- Methodology --- p.39 / Chapter III.1 --- Biomechanical Analysis of the Gamma Nail and the Dynamic Hip Screw --- p.40 / Chapter III. 1.1 --- The Testing Machine and Equipments --- p.40 / Chapter III. 1.2 --- The Design of the Testing Jig --- p.41 / Chapter III. 1.3 --- The Test of the Sliding Characteristics of the Gamma Lag Screw --- p.43 / Chapter III. 1.4 --- The Biomechanical Behaviour of Gamma Nail Fixation and the Dynamic Hip Screw Fixation in Cadaveric Femora --- p.47 / Chapter III.2 --- Randomized Prospective Trial of Gamma Nail and Dynamic Hip Screw in the Treatment of Peritrochanteric Fractures Among Geriatric Patients --- p.51 / Chapter III.3 --- Anthropometric Study of Chinese Femora with Respect to the Design of the Gamma Nail and the Application of the Anthropometric Data for the Modification of the Gamma Nail --- p.55 / Chapter III.4 --- Method of Statistical Analysis --- p.61 / Chapter IV --- Results --- p.62 / Chapter IV. 1 --- The Biomechanical Analysis of the Gamma Nail and the Dynamic Hip Screws --- p.63 / Chapter IV. 1.1 --- The Sliding Characteristics of Gamma Lag Screw --- p.63 / Chapter IV. 1.2 --- The Biomechanical Behaviours of Gamma Nail and the Dynamic Hip Screw --- p.65 / Chapter IV.2 --- Clinical Studies --- p.70 / Chapter IV.2.1 --- Randomised Prospective Trial of Gamma Nail and Dynamic Hip Screw in the Treatment of Peritrochanteric Fractures --- p.70 / Chapter IV.2.2 --- Comparisons between the Clinical Use of Standard and Modified Gamma Nails --- p.75 / Chapter IV.3 --- The Anthropometric Study of the Proximal Chinese Femora and the Application of Anthropometric Data on the Modification of Gamma Nails --- p.78 / Chapter V --- Discussion --- p.85 / Chapter VI --- Conclusion --- p.109 / REFERENCES --- p.112 / APPENDICES --- p.122 / Chapter Appendix 1 --- Data Record Sheet of Retrospective Analysis of Geriatric Fractures Treated in the Prince of Wales Hospital --- p.123 / Chapter Appendix 2 --- Calibration Curve of the Linear Variable Differential Transformer (LVDT) --- p.125 / Chapter Appendix 3 --- Data Record Sheets for the Randomized Prospective Trial of Gamma Nail and Dynamic Hip Screw --- p.126 / Chapter Appendix 4 --- Operative Procedure of Dynamic Hip Screw and Gamma Nail - A Summary and Modifications --- p.132 / Chapter Appendix 5 --- Methodology for the Measurement of the Sliding of the Lag Screw of Gamma Nail on Serial X-ray Films --- p.138 / Chapter Appendix 6 --- Results of X-ray Measurement and Bone Densitometry Measurement of Cadaveric Femora --- p.142 / Chapter Appendix 7 --- Extra Data from the Results of the Randomized Prospective Trial of Gamma Nail and Dynamic Hip Screw --- p.144 / Chapter Appendix 8 --- Results of Anthropometric Study of 30 Chinese Femora --- p.145
264

Transcriptional and proteomic study of brain and reproductive organ-expressed (BRE) gene in human umbilical cord perivascular stem cells. / 人類臍帶血管周皮幹細胞中腦和生殖器官表達基因BRE的轉錄及蛋白水平的研究 / CUHK electronic theses & dissertations collection / Ren lei qi dai xue guan zhou pi gan xi bao zhong nao he sheng zhi qi guan biao da ji yin BRE de zhuan lu ji dan bai shui ping de yan jiu

January 2012 (has links)
幹細胞療法是近年的研究熱點之一,然而幹細胞在組織修復中的實際應用受到移植後幹細胞存活率低的制約,約80% 的幹細胞在移植至組織後不能存活。 人類臍帶血管周皮 (HUCPV) 幹細胞為多功能間充質幹細胞移植提供豐富的細胞來源。 在合適的誘導環境下,它們具有向多種間充質細胞系分化的能力。 與從骨髓或臍帶血中提取的間充質幹細胞比較,人類臍帶血管周皮幹細胞的體外增殖更為容易。 在本研究中,我們從人類臍帶血管周圍組織中分離人類臍帶血管周皮幹細胞,並採用流式細胞技術分選細胞表面標記物CD34、CD45呈陰性同時CD44 、CD90、 CD105、 CD146呈陽性的HUCPV細胞。HUCPV細胞在體外培養以及三維支架的環境下具有分化為骨和軟骨的能力。 / 在本研究中,我們主要研究腦和生殖器官表達基因(BRE)在HUCPV細胞中的功能。 BRE蛋白與其他已知蛋白的同源性均不高,目前尚未鑑定出任何功能性的結構域。 至今為止,BRE基因的已知功能大多數是通過對腫瘤模型的研究發現的。 據報導,BRE能夠提高DNA損傷的腫瘤細胞的存活率,但BRE在幹細胞中的作用仍不清楚。 我們發現,當HUCPV細胞分化後,其BRE的表達水平降低。 此外,利用BRE-siRNA降低HUCPV細胞中BRE基因的表達,能夠促進HUCPV細胞向骨和軟骨分化的進程。 因此,我們假設BRE對維持HUCPV細胞的幹細胞功能具有重要的作用。 由於經過BRE基因沉默處理的HUCPV細胞與對照組相比並無顯著的表型差別,我們採用微陣列(microarray)以及比較蛋白組學的方法研究兩者間的區別,從而找出BRE基因的功能以及可能涉及BRE的信號通路。 / 通過微陣列技術,我們深入地分析了BRE基因表達沉默後HUCPV細胞的轉錄組。 在經過BRE基因沉默處理的HUCPV細胞中,我們發現與維持幹細胞多向分化潛能有關的OCT4、 FGF5和FOXO1A等基因的表達顯著下調。 另外,BRE基因的沉默能夠影響表觀遺傳調控基因以及TGF-β 信號通路組成部件的表達,而TGF -β 信號通路是維持幹細胞自我更新的重要通路。 這些結果提示,BRE作為一個重要的調控因子,在維持HUCPV細胞的多向分化潛能的同時能夠防止細胞分化。 / 在比較蛋白組學的研究中,我們發現BRE基因的沉默能夠降低細胞骨架結合蛋白的表達,例如actin, annexin II 及 tropomyosin。 此外,我們利用免疫共沉澱的方法證明了BRE蛋白與actin及 annexin II蛋白直接結合。 細胞骨架的改變可能為HUCPV細胞的分化提供了一個有利的環境,因而BRE基因的沉默能夠促進HUCPV細胞向骨和軟骨分化。 支持這一推論的其中一個依據是Lim et al., 2000; Solursh, 1989; Zhang et al., 2006,文獻報導肌動蛋白多聚化抑製劑能夠促進軟骨形成的過程。 綜上所述,本研究為進一步研究BRE基因在HUCPV細胞中的功能以及與BRE直接作用的蛋白打下了基礎。 / Stem cells therapy has gained considerable attention in recent years. However, the practical use of stem cells for tissue repair has been hindered due to their low survival rate after grafting into tissues, for approximately 80% of the stem cells died after implantation. Human umbilical cord perivascular (HUCPV) stem cells offer a new and rich resource of multipotent mesenchymal stem cells. These cells possess the ability to differentiate into various mesenchymal cell lineages when induced. HUCPV cells can be more easily amplified in culture than mesenchymal stem cells extracted from bone marrow or umbilical cord blood. In this study, HUCPV cells were isolated from the perivascular regions of human umbilical cords. The HUCPV cells were sorted using flow cytometer for CD34⁻, CD44⁺, CD45⁻, CD90⁺, CD105⁺ and CD146⁺ surface markers. These HUCPV cells were found to be capable of differentiating into osteogenic lineage in monolayer culture and chondrogenic lineage in pellet culture. These cells were also found to be capable of differentiating into osteogenic and chondrogenic lineage in silk fibroin which acted as three-dimensional scaffolds for the cells to grow on. / The function of the Brain and Reproductive Organ-Expressed (BRE) gene in the context of HUCPV cells was investigated. The BRE protein shares no homology with any other known gene products and contains no known functional domain. To date, most of what we know about the function of this gene has been conducted in the tumor model. It has been reported that BRE can enhance the cellular survival of cancer cells following DNA damage. The role of BRE in stem cells has never been examined. We have established that BRE expression was down-regulated when HUCPV cells started to differentiate. In addition, silencing BRE expression, using BRE-siRNA, in HUCPV cells could accelerate osteogenic and chondrogenic differentiation. Hence, we hypothesized that BRE played an important role in maintaining the stemness of HUCPV cells. Because there was a lack of phenotypic difference between the BRE-silenced HUCPV cells and cells transfected with the control-siRNA, we decided to profile these cells using microarray and proteomic analyses. The aim was to elucidate the function of the BRE gene and establish whether BRE was involved in any signaling pathways. / In the microarray analysis, we examined the transcriptome of HUCPV cells in response to BRE-silencing in depth. Amongst the genes that we identified were significantly down-regulated by BRE-silencing and involved in the maintenance of pluripotency in ES cells were OCT4, FGF5 and FOXO1A. BRE-silencing also altered the expression of epigenetic genes and also components of the TGF-β signaling pathway. This pathway is crucially involved in maintaining stem cell self-renewal. Therefore, we propose that BRE acts like a modulator that promotes stemness and at the same time inhibits the differentiation of HUCPV cells. / In the comparative proteomic study, BRE-silencing resulted in decreased expression patterns of cytoskeletal binding proteins such as actin, annexin II and tropomyosin. In addition, co-immunoprecipitation experiments revealed that the BRE protein can bind directly with actin and annexin II. It is possible that altering the cytoskeleton may provide a favorable environment for HUCPV cells to differentiate. This may explain why we were able to accelerate osteogenic and chondrogenic differentiation following BRE-silencing. In support of the view, it has been reported that chondrogenesis could be enhanced after cells have been treated with actin polymerization inhibitors (Lim et al., 2000; Solursh, 1989; Zhang et al., 2006). In sum, our studies provide an insight into the function of the BRE gene in HUCPV cells and the proteins that BRE can directly act on. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chen, Elve. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 135-159). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Thesis/Assessment Committee --- p.i / Abstract --- p.ii / 摘要 --- p.v / Acknowledgements --- p.viii / List of Figures --- p.ix / List of Tables --- p.xiii / Table of Abbreviations --- p.xiv / Contents --- p.xviii / Chapter 1 --- p.1 / Literature Review --- p.1 / Chapter 1.1 --- Stem cells --- p.1 / Chapter 1.2 --- Embryonic stem cells (ESCs) --- p.2 / Chapter 1.3 --- Epiblast-derived stem (EpiS) cells --- p.2 / Chapter 1.4 --- Somatic stem cells (SSCs) --- p.3 / Chapter 1.5 --- Induced pluripotent stem (iPS) cells --- p.5 / Chapter 1.6 --- Human umbilical cord perivascular (HUCPV) cells --- p.7 / Chapter 1.7 --- CD146 --- p.8 / Chapter 1.8 --- Stem cell senescence --- p.9 / Chapter 1.9 --- Brain and reproductive organ-expressed (BRE) protein --- p.12 / Chapter 1.10 --- Stem cell self-renewal --- p.14 / Chapter 1.11 --- Apoptosis --- p.16 / Chapter 1.12 --- Stem cell niche --- p.21 / Chapter 1.13 --- Stem cell homing --- p.22 / Chapter 1.14 --- Objective --- p.22 / Chapter 2 --- p.24 / Accelerated osteogenic and chondrogenic differentiation of HUCPV cells by modulating the expression of BRE --- p.24 / Chapter 2.1 --- Introduction --- p.24 / Chapter 2.2 --- Rationale --- p.27 / Chapter 2.3 --- Materials and Methods --- p.27 / Chapter 2.3.1 --- Extraction of HUCPV cells from umbilical cord --- p.27 / Chapter 2.3.2 --- Cell culture condition --- p.28 / Chapter 2.3.3 --- Flow cytometry analysis and cell sorting --- p.28 / Chapter 2.3.4 --- In vitro osteogenic differentiation --- p.29 / Chapter 2.3.5 --- In vitro chondrogenic differentiation --- p.29 / Chapter 2.3.6 --- Alcian blue staining --- p.29 / Chapter 2.3.7 --- Alizarin red S staining --- p.30 / Chapter 2.3.8 --- Immunofluorescence analysis --- p.30 / Chapter 2.3.9 --- Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) --- p.31 / Chapter 2.3.10 --- Transfection with siRNA --- p.35 / Chapter 2.3.11 --- Microarray --- p.35 / Chapter 2.3.12 --- Cell lysis and immunoprecipitation --- p.36 / Chapter 2.3.13 --- SDS-PAGE and Western blot --- p.36 / Chapter 2.3.14 --- Isoelectric focusing and 2-dimensional gel electrophoresis --- p.37 / Chapter 2.3.15 --- Migration (wound healing) assay --- p.38 / Chapter 2.4 --- Results --- p.38 / Chapter 2.4.1 --- HUCPV cells were capable to differentiate into osteoblasts and chondrocytes --- p.38 / Chapter 2.4.2 --- BRE expression is down-regulated when HUCPV cells begins to differentiate --- p.40 / Chapter 2.4.3 --- Silencing of BRE expression accelerates induction of osteogenesis and chondrogenesis --- p.40 / Chapter 2.4.4 --- Microarray analysis of BRE-silenced HUCPV cells --- p.42 / Chapter 2.4.4.1 --- Stemness factors --- p.43 / Chapter 2.4.4.2 --- Epigenetic regulation --- p.43 / Chapter 2.4.4.3 --- Signaling pathways crucial for stemness maintenance --- p.44 / Chapter 2.4.4.4 --- TGF-β signaling --- p.44 / Chapter 2.4.4.5 --- FGF signaling --- p.44 / Chapter 2.4.4.6 --- NOTCH signaling --- p.45 / Chapter 2.4.4.7 --- WNT signaling --- p.46 / Chapter 2.4.4.8 --- Homeobox transcription factors (HOX) --- p.46 / Chapter 2.4.4.9 --- Cell cycle regulation --- p.47 / Chapter 2.4.4.10 --- Chemokines and cytokines regulation --- p.48 / Chapter 2.4.4.11 --- Apoptosis --- p.49 / Chapter 2.4.5 --- BRE-silencing alters the cellular proteome of HUCPV cells --- p.50 / Chapter 2.4.5.1 --- BRE-silencing alters the cytoskeletal binding proteins of HUCPV cells --- p.51 / Chapter 2.4.5.2 --- BRE-silencing alters the expressions of stemness-related proteins in HUCPV cells --- p.52 / Chapter 2.4.5.3 --- BRE-silencing alters the expressions of apoptosis-related proteins in HUCPV cells --- p.53 / Chapter 2.5 --- Discussion --- p.86 / Chapter 2.5.1 --- Microarray study discussion --- p.87 / Chapter 2.5.2 --- Proteomic study discussion --- p.89 / Chapter 3 --- p.93 / Replicative senescence alters the transcriptome and proteome of HUCPV cells --- p.93 / Chapter 3.1 --- Introduction --- p.93 / Chapter 3.2 --- Materials and methods --- p.93 / Chapter 3.3 --- Results --- p.93 / Chapter 3.3.1 --- Microarray analysis of aged HUCPV cells --- p.94 / Chapter 3.3.1.1 --- Stemness factors --- p.95 / Chapter 3.3.1.2 --- Epigenetic regulation --- p.96 / Chapter 3.3.1.3 --- Senescence associated markers --- p.96 / Chapter 3.3.1.4 --- Chemokines and cytokines regulation --- p.97 / Chapter 3.3.1.5 --- Matrix metalloproteinases regulation --- p.97 / Chapter 3.3.1.6 --- WNT signaling --- p.98 / Chapter 3.3.1.7 --- Toll-like receptor signaling pathway --- p.98 / Chapter 3.3.2 --- Proteomic profiling of aged HUCPV cells --- p.98 / Chapter 3.4 --- Discussion --- p.117 / Chapter 3.4.1 --- Aging alters the transcriptome of HUCPV cells --- p.117 / Chapter 3.4.2 --- Aging alters the proteome of HUCPV cells --- p.118 / Chapter 4 --- p.121 / Osteogenic and chondrogenic differentiation capacities of HUCPV cells in silk fibroin scaffold --- p.121 / Chapter 4.1 --- Introduction --- p.121 / Chapter 4.2 --- Materials and methods --- p.121 / Chapter 4.2.1 --- Extraction of silk fibroin --- p.121 / Chapter 4.2.2 --- Fabrication of porous silk fibroin scaffold --- p.122 / Chapter 4.2.3 --- Scanning electron microscopy --- p.123 / Chapter 4.2.4 --- Cell culture --- p.123 / Chapter 4.3 --- Results --- p.124 / Chapter 4.4 --- Discussion --- p.132 / Chapter 5 --- p.133 / Conclusions --- p.133 / References --- p.135
265

A comprehensive cellular and transcriptomic analysis of end-stage renal failure and transplantation

Jolly, Elaine Christina January 2014 (has links)
No description available.
266

Retinal glial responses to mesenchymal stem cell transplantation

Tassoni, Alessia January 2015 (has links)
No description available.
267

Effects of growth factors and media on the ex vivo expansion of cord blood hematopoietic stem and progenitor cells for transplantation.

January 2001 (has links)
Lam Audrey Carmen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 166-195). / Abstracts in English and Chinese. / Acknowledgements --- p.vi / Publications --- p.vii / Abbreviations --- p.x / Abstract --- p.xiii / Chapter Chapter One - --- Introduction --- p.1 / Chapter Section 1.1 --- Hematopoietic Stem Cells --- p.1 / Chapter 1.1.1 --- Hematopoiesis --- p.1 / Chapter 1.1.2 --- Hematopoietic Stem and Progenitor Cells --- p.1 / Chapter Section 1.2 --- Stem Cell Transplantation --- p.4 / Chapter 1.2.1 --- Stem Cell Transplantation --- p.4 / Chapter 1.2.2 --- Sources of Hematopoietic Stem Cells for Transplantation --- p.4 / Chapter 1.2.3 --- Cord Blood as a Source of Hematopoietic Stem Cells --- p.6 / Chapter 1.2.3.1 --- Advantages of Cord Blood Transplant --- p.6 / Chapter 1.2.3.2 --- Disadvantages of Cord Blood Transplant --- p.7 / Chapter Section 1.3 --- Ex Vivo Expansion --- p.8 / Chapter 1.3.1 --- Optimization of Expansion Conditions --- p.10 / Chapter 1.3.1.1 --- CD34+ Cell Selection --- p.10 / Chapter 1.3.1.2 --- Cytokines --- p.11 / Chapter 1.3.1.2.1 --- Thrombopoietin --- p.12 / Chapter 1.3.1.2.2 --- Stem Cell Factor --- p.14 / Chapter 1.3.1.2.3 --- Flt-3 Ligand --- p.15 / Chapter 1.3.1.2.4 --- Granulocyte-Colony Stimulating Factor --- p.16 / Chapter 1.3.1.2.5 --- Interleukin-3 --- p.17 / Chapter 1.3.1.2.6 --- Interleukin-6 --- p.18 / Chapter 1.3.1.2.7 --- Comparison of Flt-3 Ligand and Stem Cell Factor --- p.20 / Chapter 1.3.1.3 --- Culture Medium --- p.20 / Chapter 1.3.2 --- Mannose-Binding Lectin --- p.22 / Chapter 1.3.3 --- Ex Vivo Expansion for Clinical Transplantation --- p.23 / Chapter Section 1.4 --- Non-Obese Diabetic/Severe Combined Immunodeficient Mouse Transplantation Model --- p.29 / Chapter Chapter Two - --- Objectives --- p.32 / Chapter Chapter Three - --- Materials and Methodology --- p.34 / Chapter Section 3.1 --- Collection of Cord Blood Samples / Chapter Section 3.2 --- Cryopreservation and Thawing of Cord Blood --- p.34 / Chapter Section 3.3 --- Enrichment of CD34+ Cells --- p.35 / Chapter Section 3.4 --- Ex Vivo Expansion --- p.38 / Chapter 3.4.1 --- Effects of Flt-3 Ligand and stem Cell Factor on the Expansion of Megakaryocytic Progenitor Cells --- p.39 / Chapter 3.4.1.1 --- Ex Vivo Expansion of Cord Blood CD34+ Cells with Flt-3 Ligand or Stem Cell Factor --- p.39 / Chapter 3.4.1.2 --- Flt-3 Receptor Assay --- p.40 / Chapter 3.4.2 --- Effects of Mannose-Binding Lectin on the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells --- p.41 / Chapter 3.4.2.1 --- Ex Vivo Expansion of Cord Blood CD34+ Cells with Mannose-Binding Lectin --- p.41 / Chapter 3.4.2.2 --- Effects of Mannose-Binding Lectin on the Preservation of Early Stem and Progenitor Cells --- p.41 / Chapter 3.4.2.3 --- Transplantation of Expanded Cells into NOD/SCID Mice --- p.42 / Chapter 3.4.3 --- "Optimization of Culture Duration, Culture Media, Autologous Plasma and Cytokine Combinations for the Preclinical Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells" --- p.42 / Chapter 3.4.3.1 --- "Comparison of Culture Duration, Culture Media and Cytokine Combinations" --- p.42 / Chapter 3.4.3.2 --- Effects of Autologous Cord Blood Plasma --- p.43 / Chapter 3.4.3.3 --- Effects of Flt-3 Ligand and Dosage of Thrombopoietin and Stem Cell Factor --- p.43 / Chapter 3.4.3.4 --- Transplantation of Expanded Cells into NOD/SCID Mice --- p.44 / Chapter Section 3.5 --- Progenitor Colony-Forming Assays --- p.44 / Chapter 3.5.1 --- Colony-Forming Unit Assay --- p.44 / Chapter 3.5.2 --- Colony Forming Unit Megakaryocyte --- p.46 / Chapter 3.5.3 --- Calculations of CFU --- p.46 / Chapter Section 3.6 --- Flow Cytometry Analysis --- p.47 / Chapter Section 3.7 --- Transplantation of Non-Obese Diabetic/Severe Combined Immunodeficient Mice --- p.48 / Chapter Section 3.8 --- Assessment of Human Cell Engraftment in Transplanted NOD/SCID Mice --- p.49 / Chapter 3.8.1 --- Flow Cytometry Analysis --- p.49 / Chapter 3.8.2 --- PCR Analysis --- p.50 / Chapter Section 3.9 --- Statistical Analysis --- p.52 / Chapter Chapter Four - --- Effects of Flt-3 Ligand and Stem Cell Factor on the Expansion of Megakaryocytic Progenitor Cells --- p.53 / Chapter Section 4.1 --- Results --- p.53 / Chapter 4.1.1 --- Ex Vivo Expansion of CD34+ Cells --- p.53 / Chapter 4.1.2 --- Identification of Flt-3 Receptors --- p.55 / Chapter Section 4.2 --- Discussion --- p.55 / Chapter Chapter Five- --- Effects of Mannose-Binding Lectin on the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells --- p.68 / Chapter Section 5.1 --- Results --- p.68 / Chapter 5.1.1 --- Ex Vivo Expansion of CD34+ Cells with Mannose-Binding Lectin --- p.68 / Chapter 5.1.2 --- Effects of Mannose-Binding Lectin on the Preservation of Early Stem and Progenitor Cells --- p.72 / Chapter 5.1.3 --- Transplantation of Expanded Cells into NOD/SCID Mice --- p.75 / Chapter Section 5.2 --- Discussion --- p.76 / Chapter Chapter Six - --- "Optimization of Culture Duration, Culture Media, Autologous Plasma and Cytokine Combinations for the Preclinical Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells" --- p.111 / Chapter Section 6.1 --- Results --- p.111 / Chapter 6.1.1 --- Kinetics of Expansion --- p.111 / Chapter 6.1.2 --- Assessment of Culture Media --- p.113 / Chapter 6.1.3 --- Effects of Autologous Cord Blood Plasma --- p.115 / Chapter 6.1.4 --- Effects of Granulocyte-Colony Stimulating Factor --- p.117 / Chapter 6.1.5 --- Effects of Interleukin-6 --- p.118 / Chapter 6.1.6 --- Effects of Increased Dosage of Thrombopoietin and Stem Cell Factor --- p.119 / Chapter 6.1.7 --- Effects of Flt-3 Ligand --- p.120 / Chapter 6.1.8 --- Transplantation of Expanded Cells into NOD/SCID Mice --- p.121 / Chapter Section 6.2 --- Discussion --- p.123 / Chapter Chapter Seven- --- General Discussion and Conclusion --- p.163 / Bibliography --- p.166
268

Klinische Parameter und deren Einfluss auf den Verlauf der primären Hochdosischemotherapie mit autologer Stammzelltransplantation beim Multiplen Myelom / Clinical parameters and their influence on the progress of primary high-dose chemotherapy with autologous stem cell transplantation for multiple myeloma

Winterberg, Torsten January 2011 (has links) (PDF)
In dieser Arbeit wurden die Daten von 90 konsekutiven Patienten mit Multiplem Myelom, welche im Zeitraum vom 11.04.2005 bis zum 08.11.2010 mit einer Hochdosischemotherapie und autologer Stammzelltransplantation in den Kliniken Essen Süd behandelt wurden, retrospektiv untersucht und statistisch ausgewertet. Es konnte gezeigt werden, dass ein gutes Ansprechen nach den Induktionstherapien mit einem guten Ansprechen sechzig Tage nach der Transplantation korreliert. Einen Zusammenhang zwischen dem initialen Ausmaß der Endorganschäden und dem Verlauf oder dem Ansprechen der Hochdosischemotherapie mit autologer Stammzelltransplantation konnte nicht gefunden werden. Das kalendarische Alter spielt im Gegensatz zum Allgemeinzustand und den Vorerkrankungen bei der Einschätzung der zu erwartenden Toxizität eine untergeordnete Rolle. Die beiden Hauptfaktoren, die den Verlauf einer Hochdosischemotherapie mit anschließender peripherer Stammzelltransplantation beeinflussten, waren die Dauer der G-CSF Therapie und die Anzahl der übertragenen Stammzellen. Während die unterschiedlich lange G-CSF Gabe (ab Tag „+3“ vs. Tag „+7“) nur zu einer schnelleren Regeneration der Leukozyten führt und keinen relevanten Effekt auf die untersuchten klinischen Parameter Fieber, Dauer der intravenösen Antibiotikatage, Ausmaß der Mukositis und die Aufenthaltsdauer der Patienten hatte, führte die Steigerung der Anzahl der übertragenen Stammzellen zu einer signifikant schnelleren Regeneration von Thrombozyten und Leukozyten, einem Rückgang der Transfusionshäufigkeit an Erythrozyten und einem geringeren Verbrauch an intravenösen Antibiotika. Zusammenfassend ist die G-CSF Gabe ab Tag „+7“ nach Hochdosistherapie ausreichend, eine längere Gabe erbringt keinen relevanten klinischen Vorteil. Zudem sollte auf eine ausreichende Menge an übertragenen Stammzellen geachtet werden. Zur Beurteilung der zu erwartenden Toxizität ist die Anwendung des HCT-CI-Score einfach und praktikabel. / In this study the data of 90 consecutive patients with multiple myeloma were analyzed retrospectively. There is a correlation between a good response after the induction therapy and sixty days after high-dose chemotherapy with autologous stem cell transplantation. There is no correlation between organ damages (CRAB) and the progression or the response of the high-dose chemotherapy with autologous stem cell transplantation. The chronological age is not as important as the general condition and medical history of the patient to expect the toxicity of the high-dose chemotherapy. The two main factors that influenced the process of high dose chemotherapy followed by peripheral stem cell transplantation were the duration of G-CSF therapy and the number of transplanted stem cells. The different duration of G-CSF leads only to a faster recovery of leukocytes with no relevant effect on the investigated clinical parameters temperature, duration of intravenous antibiotic days and the extent of mucositis. The increase of transplanted stem cells results in a significant faster recovery of platelets and leukocytes, a decrease in frequency of transfusion of red blood cells and a reduced use of intravenous antibiotics. In summary, the G-CSF administration from the 7th day after transplantation is sufficient for high-dose therapy, a longer administration provides no relevant clinical advantage. One should take care for having got sufficient quantity of transplanted stem cells.
269

Studies of neurotransmitter release mechanisms in dopamine neurons.

Daniel, James, St. Vincent Clinical School, UNSW January 2007 (has links)
Medications that treat diseases such as Parkinson???s disease work by regulating dopamine transmission at synapses. Surprisingly, little is known about the mechanisms regulating dopamine release at synapses. In this thesis, we study mechanisms that regulate vesicle recycling in axons and dendrites of dopamine neurons. Key questions we addressed were: (1) Are vesicles in axons and dendrites associated with the same regulatory proteins, and thus by implication the same regulatory mechanisms, as in excitatory neurons; (2) Do vesicles undergo recycling, and (3) if so, are they characterised by a distinct pool size and rate of recycling. To study this, we cultured dopamine neurons and used immunocytochemistry to detect vesicular monoamine transporter 2 (VMAT2) and identify axons, dendrites and synaptic proteins, combined with labelling of recycling vesicles using FM 1-43. Vesicles in axons, but not in dendrites, were associated with presynaptic proteins such as Synaptophysin and Bassoon. We identified two kinds of presynaptic sites in axons: ???synaptic??? (located close to soma and dendrites??? and ???orphan???. The recycling vesicle pool size was smaller at orphan sites than at synaptic sites, and the initial rate of vesicle pool release was also lower at orphan sites. Both synaptic and orphan sites exhibited lower rates of vesicle pool release compared to hippocampal synapses, suggesting functional differences in presynaptic physiology between dopamine neurons and hippocampal neurons. In somatodendritic regions, VMAT2 was localised to the endoplasmic reticulum, Golgi, endosome, and large dense-core vesicles, suggesting that these vesicles might function as a part of the regulated secretory pathway in mediating dopamine release. None of the synaptic vesicle proteins we studied were detected in these regions, although some preliminary evidence of vesicle turnover was detected using FM 1-43 labelling. This thesis provides a detailed analysis of neurotransmitter release mechanisms in dopamine neurons. Our data suggests that presynaptic release of dopamine is mediated by mechanisms similar to those observed in excitatory neurons. In somatodendritic regions, our data suggests that VMAT2 is localised to organelles in secretory pathways, and that distinct mechanisms of release might be present at somatodendritic sites to those present in presynaptic sites. This thesis provides novel methods for analysing vesicle recycling in dopamine neurons, which provides the basis for further studies examining presynaptic function of dopamine neurons in normal brain function, disease, and therapeutic approaches.
270

Lentivirus-mediated gene expression in corneal endothelium

Parker, Douglas George Anthony, park0290@flinders.edu.au January 2008 (has links)
Modulation of corneal transplant rejection using gene therapy shows promise in experimental models but the most appropriate vector for gene transfer is yet to be determined. The overarching aim of the thesis was to evaluate the potential of a lentiviral vector for use in human corneal transplantation. Specific aims were: (i) to assess the ability of an HIV-1-based lentiviral vector to mediate expression of the enhanced yellow fluorescent protein (eYFP), and a model secreted protein interleukin-10 (IL10), in ovine and human corneal endothelium; and (ii) to examine the influence of lentivirus-mediated IL10 expression on the survival of ovine corneal allografts. Four lentiviral vectors expressing eYFP under the control of different promoters, were tested: the simian virus type-40 (SV40) early promoter, the phosphoglycerate kinase (PGK) promoter, the elongation factor-1alpha (EF) promoter, and the cytomegalovirus (CMV) promoter. Two lentiviral vectors expressing IL10 were tested: one containing the SV40 promoter and another containing a steroid-inducible promoter (GRE5). Lentivirus-mediated expression in transduced ovine and human corneal endothelium was assessed by fluorescence microscopy, real-time quantitative RT-PCR and ELISA, following alterations of transduction period duration (2–24 hr) and vector dose, as well as in the presence or absence of polybrene or dexamethasone (GRE5 vector). It was also compared to expression mediated by adenoviral vectors. Orthotopic transplantation of ex vivo transduced donor corneas was performed in outbred sheep. Allografts were reviewed daily for vascularisation and signs of immunological rejection. Lentivirus-mediated eYFP expression was delayed in ovine corneal endothelium compared to human. However, in both species the final transduction rate was greater than 80% and expression was stable for at least 14 d in vitro. Lentivirus-mediated expression in ovine and human corneal endothelium was higher with the viral promoters in comparison to the mammalian promoters. A 24 h transduction of ovine corneal endothelium with the lentiviral vector encoding IL10 resulted in expression levels which were increasing after 15 d of organ culture but logarithmically lower than those achieved by adenovirus. Shortening the lentiviral transduction period to 2 h led to a reduction in expression, but the addition of polybrene (40 micrograms / ml) to the transduction mixture restored expression to levels comparable to those attained after a 24 h transduction period. Lentivirus-mediated IL10 expression was higher and more rapid in human corneal endothelium compared to ovine corneas. Dexamethasone-responsive transgene expression was observed in both ovine and human corneal endothelium using the lentiviral vector containing the GRE5 promoter. Lentivirus-mediated expression in ovine corneal endothelium was stable for 28 d in vivo. A modest prolongation of ovine corneal allograft survival (median of 7 d) was achieved by transduction of donor corneas for 2–3 h with the lentivirus expressing IL10. Attempts to increase the expression of IL10 by the addition of polybrene (40 micrograms / ml) to the transduction mixture, resulted in a toxic effect on corneal allografts which abrogated the beneficial effect of IL10. The lentiviral vector shows potential for the stable expression of therapeutic transgenes in human corneal transplantation. However, the mechanisms underlying the species-specific differences in HIV-1-mediated transgene expression will need to be elucidated and overcome if the ovine preclinical model is to provide justification for a clinical trial.

Page generated in 0.0936 seconds