• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Holocene sedimentary history of Chilliwack Valley, Northern Cascade Mountains

Tunnicliffe, Jon Francis 05 1900 (has links)
I seek to reconstruct the balance between sediment storage and yield across multiple drainage basin scales in a large (1 230 km2) watershed in the Northern Cascade range, British Columbia and Washington. Chilliwack Valley and surrounding area has been the site of numerous studies that have detailed much of its Quaternary sedimentary history. In the present study this information is supplemented by reconstruction of the morphodynamic trajectory of the river valley though the Holocene Epoch, and development of a sediment transfer model that describes the relaxation from the Fraser glaciation. The total Holocene sediment yield is estimated from basins across several scales using field and remotely sensed evidence to constrain the historical mass balance of delivery to higher order tributary basins. Rates of hillslope erosion are estimated using a diffusion-based relation for open slopes and delimitating the volume evacuated from major gully sources. Digital terrain models of paleo-surfaces are constructed to calculate total sediment erosion and deposition from tributary valleys and the mainstem. Chilliwack Lake has effectively trapped the entire post-glacial sediment load from the upper catchment (area = 334 km2), allowing to compare this "nested" system with the larger catchment. Rates of lake sediment accumulation are estimated using sediment cores and paleomagnetism. These are compared with accumulation rates in the terminal fan inferred from radiocarbon dating of fossil material, obtained by sonic drilling in the apex gravels. A sediment budget framework is then used to summarize the net transfer of weathered material and glacial sediments from the hillslope scale to the mainstem. The long-term average sediment yield from the upper basin is 62 +/- 9 t/km2/yr; contemporary yield is approximately 30 t/km2/yr. It is found that only 10-15% of the material eroded from the hillslopes is delivered to mouths of the major tributaries; the remaining material is stored at the base of footslopes and within the fluvial sedimentary system. Since the retreat of Fraser Ice from the mouth of the valley, Chilliwack River delivered over 1.8 +/- 0.21 km3 of gravel and sand to Vedder Fan in the Fraser Valley. In the sediment budget developed here, roughly 85% of that material is attributed to glacial sources, notably the Ryder Uplands and glacial valley fills deposited along the mainstem, upstream of Tamihi Creek. In tributary valleys, local base-level has fallen, leading to the evacuation of deep glacial sedimentary fills. Many of the lower reaches of major tributaries in upper Chilliwack Valley (e.g. Centre and Nesakwatch Creeks) remain primarily sediment sinks for slope-derived inputs, since base-level fall has not been initiated. In distal tributaries (Liumchen, Tamihi and Slesse creeks), paraglacial fans have been incised or completely eroded, entrained by laterally active channels. A transition from transport-limited to supply-limited conditions has been effected in many of these reaches. Slesse Creek has struck an intermediate balance, as it continues to remobilize its considerable sediment stores. It functions today as the sedimentary headwaters of Chilliwack Valley. Using grain size data and fine-sediment geochemical data gathered from Chilliwack River over the course of several field seasons, a simple finite-difference, surface-based sediment transport model is proposed. The aim of the model is to integrate the sediment-balance information, as inferred from estimates of hillslope erosion and valley storage, and physical principles of sediment transport dynamics to reproduce the key characteristics of a system undergoing base-level fall and reworking its considerable valley fill during degradation. Such characteristics include the river long profile, the river grain-size fining gradient, the percentage of substrate sand, and the diminution of headwater granite lithology in the active load. The model is able to reproduce many of the characteristics, but is not able to satisfy all criteria simultaneously. There is inevitably some ambiguity as to the set of parameters that produce the "right" result, however the model provides good insight into long-term interactions among parameters such as dominant discharge, grain size specifications, abrasion rates, initial topography, hiding functions, and hydraulic parameters.
2

Holocene sedimentary history of Chilliwack Valley, Northern Cascade Mountains

Tunnicliffe, Jon Francis 05 1900 (has links)
I seek to reconstruct the balance between sediment storage and yield across multiple drainage basin scales in a large (1 230 km2) watershed in the Northern Cascade range, British Columbia and Washington. Chilliwack Valley and surrounding area has been the site of numerous studies that have detailed much of its Quaternary sedimentary history. In the present study this information is supplemented by reconstruction of the morphodynamic trajectory of the river valley though the Holocene Epoch, and development of a sediment transfer model that describes the relaxation from the Fraser glaciation. The total Holocene sediment yield is estimated from basins across several scales using field and remotely sensed evidence to constrain the historical mass balance of delivery to higher order tributary basins. Rates of hillslope erosion are estimated using a diffusion-based relation for open slopes and delimitating the volume evacuated from major gully sources. Digital terrain models of paleo-surfaces are constructed to calculate total sediment erosion and deposition from tributary valleys and the mainstem. Chilliwack Lake has effectively trapped the entire post-glacial sediment load from the upper catchment (area = 334 km2), allowing to compare this "nested" system with the larger catchment. Rates of lake sediment accumulation are estimated using sediment cores and paleomagnetism. These are compared with accumulation rates in the terminal fan inferred from radiocarbon dating of fossil material, obtained by sonic drilling in the apex gravels. A sediment budget framework is then used to summarize the net transfer of weathered material and glacial sediments from the hillslope scale to the mainstem. The long-term average sediment yield from the upper basin is 62 +/- 9 t/km2/yr; contemporary yield is approximately 30 t/km2/yr. It is found that only 10-15% of the material eroded from the hillslopes is delivered to mouths of the major tributaries; the remaining material is stored at the base of footslopes and within the fluvial sedimentary system. Since the retreat of Fraser Ice from the mouth of the valley, Chilliwack River delivered over 1.8 +/- 0.21 km3 of gravel and sand to Vedder Fan in the Fraser Valley. In the sediment budget developed here, roughly 85% of that material is attributed to glacial sources, notably the Ryder Uplands and glacial valley fills deposited along the mainstem, upstream of Tamihi Creek. In tributary valleys, local base-level has fallen, leading to the evacuation of deep glacial sedimentary fills. Many of the lower reaches of major tributaries in upper Chilliwack Valley (e.g. Centre and Nesakwatch Creeks) remain primarily sediment sinks for slope-derived inputs, since base-level fall has not been initiated. In distal tributaries (Liumchen, Tamihi and Slesse creeks), paraglacial fans have been incised or completely eroded, entrained by laterally active channels. A transition from transport-limited to supply-limited conditions has been effected in many of these reaches. Slesse Creek has struck an intermediate balance, as it continues to remobilize its considerable sediment stores. It functions today as the sedimentary headwaters of Chilliwack Valley. Using grain size data and fine-sediment geochemical data gathered from Chilliwack River over the course of several field seasons, a simple finite-difference, surface-based sediment transport model is proposed. The aim of the model is to integrate the sediment-balance information, as inferred from estimates of hillslope erosion and valley storage, and physical principles of sediment transport dynamics to reproduce the key characteristics of a system undergoing base-level fall and reworking its considerable valley fill during degradation. Such characteristics include the river long profile, the river grain-size fining gradient, the percentage of substrate sand, and the diminution of headwater granite lithology in the active load. The model is able to reproduce many of the characteristics, but is not able to satisfy all criteria simultaneously. There is inevitably some ambiguity as to the set of parameters that produce the "right" result, however the model provides good insight into long-term interactions among parameters such as dominant discharge, grain size specifications, abrasion rates, initial topography, hiding functions, and hydraulic parameters.
3

Holocene sedimentary history of Chilliwack Valley, Northern Cascade Mountains

Tunnicliffe, Jon Francis 05 1900 (has links)
I seek to reconstruct the balance between sediment storage and yield across multiple drainage basin scales in a large (1 230 km2) watershed in the Northern Cascade range, British Columbia and Washington. Chilliwack Valley and surrounding area has been the site of numerous studies that have detailed much of its Quaternary sedimentary history. In the present study this information is supplemented by reconstruction of the morphodynamic trajectory of the river valley though the Holocene Epoch, and development of a sediment transfer model that describes the relaxation from the Fraser glaciation. The total Holocene sediment yield is estimated from basins across several scales using field and remotely sensed evidence to constrain the historical mass balance of delivery to higher order tributary basins. Rates of hillslope erosion are estimated using a diffusion-based relation for open slopes and delimitating the volume evacuated from major gully sources. Digital terrain models of paleo-surfaces are constructed to calculate total sediment erosion and deposition from tributary valleys and the mainstem. Chilliwack Lake has effectively trapped the entire post-glacial sediment load from the upper catchment (area = 334 km2), allowing to compare this "nested" system with the larger catchment. Rates of lake sediment accumulation are estimated using sediment cores and paleomagnetism. These are compared with accumulation rates in the terminal fan inferred from radiocarbon dating of fossil material, obtained by sonic drilling in the apex gravels. A sediment budget framework is then used to summarize the net transfer of weathered material and glacial sediments from the hillslope scale to the mainstem. The long-term average sediment yield from the upper basin is 62 +/- 9 t/km2/yr; contemporary yield is approximately 30 t/km2/yr. It is found that only 10-15% of the material eroded from the hillslopes is delivered to mouths of the major tributaries; the remaining material is stored at the base of footslopes and within the fluvial sedimentary system. Since the retreat of Fraser Ice from the mouth of the valley, Chilliwack River delivered over 1.8 +/- 0.21 km3 of gravel and sand to Vedder Fan in the Fraser Valley. In the sediment budget developed here, roughly 85% of that material is attributed to glacial sources, notably the Ryder Uplands and glacial valley fills deposited along the mainstem, upstream of Tamihi Creek. In tributary valleys, local base-level has fallen, leading to the evacuation of deep glacial sedimentary fills. Many of the lower reaches of major tributaries in upper Chilliwack Valley (e.g. Centre and Nesakwatch Creeks) remain primarily sediment sinks for slope-derived inputs, since base-level fall has not been initiated. In distal tributaries (Liumchen, Tamihi and Slesse creeks), paraglacial fans have been incised or completely eroded, entrained by laterally active channels. A transition from transport-limited to supply-limited conditions has been effected in many of these reaches. Slesse Creek has struck an intermediate balance, as it continues to remobilize its considerable sediment stores. It functions today as the sedimentary headwaters of Chilliwack Valley. Using grain size data and fine-sediment geochemical data gathered from Chilliwack River over the course of several field seasons, a simple finite-difference, surface-based sediment transport model is proposed. The aim of the model is to integrate the sediment-balance information, as inferred from estimates of hillslope erosion and valley storage, and physical principles of sediment transport dynamics to reproduce the key characteristics of a system undergoing base-level fall and reworking its considerable valley fill during degradation. Such characteristics include the river long profile, the river grain-size fining gradient, the percentage of substrate sand, and the diminution of headwater granite lithology in the active load. The model is able to reproduce many of the characteristics, but is not able to satisfy all criteria simultaneously. There is inevitably some ambiguity as to the set of parameters that produce the "right" result, however the model provides good insight into long-term interactions among parameters such as dominant discharge, grain size specifications, abrasion rates, initial topography, hiding functions, and hydraulic parameters. / Arts, Faculty of / Geography, Department of / Graduate
4

Investigations of photorefractive barium titanate at high intensity

Barry, Nicholas Peter January 1996 (has links)
No description available.
5

Compact modeling for multi-gate mosfets using advanced transport models

Cheralathan, Muthupandian 25 February 2013 (has links)
En aquesta tesi hem desenvolupat models compactes que incorporen un model de transport hidrodinàmic adaptat a multi-gate (principalment double-gate (DG) and surrounding-gate (SRG) MOSFETs a partir de models unificats de control de càrrega I del potencial de superfície, obtinguts de l’equació de Poisson. Tots aquests dispositius es modelitzen seguint un esquema semblant. El corrent i càrregues totals s’escriuen en funció de les densitats de càrrega mòbil per unitat d’àrea als extrems drenador i font del canal. Els efectes de canal curt i quàntics també s’inclouen en el model compacte desenvolupat. El model desenvolupat mostra un bon acord amb simulacions numèriques 2D i 3D en tots els règims d’operació. El model desenvolupat s’implementa i testeja al simulador de circuits SMASH per a l’anàlisi dels comportaments DC i transitori de circuits CMOS. / En esta tesis hemos desarrollado modelos compactos que incorporan un modelo de transporte hidrodinámico adaptado a multi-gate (principalmente double-gate (DG) and surrounding-gate (SRG) MOSFETs a partir de modelos unificados de control de carga I del potencial de superficie, obtenidos de la ecuación de Poisson. Todos estos dispositivos se modelizan siguiendo un esquema similar. La corriente y cargas totales escriben en función de las densidades de carga móvil por unidad de área en los extremos drenador y fuente del canal. Los efectos de canal corto y cuánticos también se incluyen en el modelo compacto desarrollado. El modelo desarrollado muestra un buen acuerdo con simulaciones numéricas 2D y 3D en todos los regímenes de operación. El modelo desarrollado se implementa y testea el simulador de circuitos SMASH para el análisis de los comportamientos DC y transitorio de circuitos CMOS.
6

Computational Tools for Chemical Data Assimilation with CMAQ

Gou, Tianyi 15 February 2010 (has links)
The Community Multiscale Air Quality (CMAQ) system is the Environmental Protection Agency's main modeling tool for atmospheric pollution studies. CMAQ-ADJ, the adjoint model of CMAQ, offers new analysis capabilities such as receptor-oriented sensitivity analysis and chemical data assimilation. This thesis presents the construction, validation, and properties of new adjoint modules in CMAQ, and illustrates their use in sensitivity analyses and data assimilation experiments. The new module of discrete adjoint of advection is implemented with the aid of automatic differentiation tool (TAMC) and is fully validated by comparing the adjoint sensitivities with finite difference values. In addition, adjoint sensitivity with respect to boundary conditions and boundary condition scaling factors are developed and validated in CMAQ. To investigate numerically the impact of the continuous and discrete advection adjoints on data assimilation, various four dimensional variational (4D-Var) data assimilation experiments are carried out with the 1D advection PDE, and with CMAQ advection using synthetic and real observation data. The results show that optimization procedure gives better estimates of the reference initial condition and converges faster when using gradients computed by the continuous adjoint approach. This counter-intuitive result is explained using the nonlinearity properties of the piecewise parabolic method (the numerical discretization of advection in CMAQ). Data assimilation experiments are carried out using real observation data. The simulation domain encompasses Texas and the simulation period is August 30 to September 1, 2006. Data assimilation is used to improve both initial and boundary conditions. These experiments further validate the tools developed in this thesis. / Master of Science
7

TraVIS for Roads - Examples of Road Transport Vulnerability Impact Studies

Berdica, Katja January 2002 (has links)
No description available.
8

TraVIS for Roads - Examples of Road Transport Vulnerability Impact Studies

Berdica, Katja January 2002 (has links)
No description available.
9

Carbon cycling at the estuarine interface: a new model for regional and global scale assessment

Volta, Chiara 24 March 2016 (has links)
The overarching goal of this thesis is to develop a diagnostic and predictive model to quantify the estuarine CO2 dynamics across scales – from catchment to the globe – using an approach that explicitly resolves the strong physical and biogeochemical gradients typically observed in these systems.Chapter 1 provides fundamental definitions and descriptions of estuaries, as well as an assessment of their role in the global carbon cycle. It also raises the specific objectives and research questions tackled in the present study. Chapter 2 presents the rationale behind the novel modelling approach (C-GEM, Carbon-Generic Estuary Model) developed in the framework of this thesis. First, the dominant processes that control the estuarine biogeochemistry in estuaries are discussed in detail. Then, the power of reactive-transport models (RTMs) in understanding and quantifying the estuarine biogeochemical functioning is illustrated on the basis of local modelling studies. Finally, trends in estuarine biogeochemical dynamics across different geometries and environmental scenarios are briefly explored with C-GEM and results are discussed in the context of improving the modelling of estuarine carbon dynamics at regional and global scales. In Chapter 3, a detailed description of C-GEM, both in terms of structure and set-up, is provided and model’s performance is successfully evaluated through comprehensive model-data and model-model comparisons in the macro-tidal Scheldt estuary (BE/NL). In Chapter 4, C-GEM is combined with a generic set of forcing conditions and parameter values to quantify the carbon dynamics (net ecosystem metabolism, CO2 exchange at the air-water interface, carbon filtering capacity) in three idealized estuaries subject to temperate climatic conditions. Their hydro-geometrical characteristics span the wide diversity of estuarine morphological characteristics. Model results are used to upscale the estuarine CO2 dynamics under present-day conditions and to quantify the response of the estuarine filter to future atmospheric CO2, land use and climate change scenarios. In Chapter 5, C-GEM is applied to derive estimations of carbon export and CO2 outgassing from all tidal estuaries discharging in the North Sea. Overall, our results suggest that the estuarine carbon filtering capacity and the contribution of these land-ocean transition systems to the atmospheric CO2 budget might not be as high as previously thought. Finally, a conclusive chapter (Chapter 6) provides a synthesis of the key findings and arguments projected by the present research work. Moreover, recommendations are given in the light of further applications of the modelling approach developed during this thesis. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
10

Efficient Computational Tools for Variational Data Assimilation and Information Content Estimation

Singh, Kumaresh 23 August 2010 (has links)
The overall goals of this dissertation are to advance the field of chemical data assimilation, and to develop efficient computational tools that allow the atmospheric science community benefit from state of the art assimilation methodologies. Data assimilation is the procedure to combine data from observations with model predictions to obtain a more accurate representation of the state of the atmosphere. As models become more complex, determining the relationships between pollutants and their sources and sinks becomes computationally more challenging. The construction of an adjoint model ( capable of efficiently computing sensitivities of a few model outputs with respect to many input parameters ) is a difficult, labor intensive, and error prone task. This work develops adjoint systems for two of the most widely used chemical transport models: Harvard's GEOS-Chem global model and for Environmental Protection Agency's regional CMAQ regional air quality model. Both GEOS-Chem and CMAQ adjoint models are now used by the atmospheric science community to perform sensitivity analysis and data assimilation studies. Despite the continuous increase in capabilities, models remain imperfect and models alone cannot provide accurate long term forecasts. Observations of the atmospheric composition are now routinely taken from sondes, ground stations, aircraft, and satellites, etc. This work develops three and four dimensional variational data assimilation capabilities for GEOS-Chem and CMAQ which allow to estimate chemical states that best fit the observed reality. Most data assimilation systems to date use diagonal approximations of the background covariance matrix which ignore error correlations and may lead to inaccurate estimates. This dissertation develops computationally efficient representations of covariance matrices that allow to capture spatial error correlations in data assimilation. Not all observations used in data assimilation are of equal importance. Erroneous and redundant observations not only affect the quality of an estimate but also add unnecessary computational expense to the assimilation system. This work proposes techniques to quantify the information content of observations used in assimilation; information-theoretic metrics are used. The four dimensional variational approach to data assimilation provides accurate estimates but requires an adjoint construction, and uses considerable computational resources. This work studies versions of the four dimensional variational methods (Quasi 4D-Var) that use approximate gradients and are less expensive to develop and run. Variational and Kalman filter approaches are both used in data assimilation, but their relative merits and disadvantages in the context of chemical data assimilation have not been assessed. This work provides a careful comparison on a chemical assimilation problem with real data sets. The assimilation experiments performed here demonstrate for the first time the benefit of using satellite data to improve estimates of tropospheric ozone. / Ph. D.

Page generated in 0.2177 seconds