• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 10
  • 4
  • 2
  • 1
  • Tagged with
  • 51
  • 51
  • 31
  • 18
  • 15
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of magnetic tunnel junction fabrication techniques

Elwell, Clifford Alastair January 2002 (has links)
The discovery of large, room temperature magnetoresistance (MR) in magnetic tunnel junctions in 1995 sparked great interest in these devices. Their potential applications include hard disk read head sensors and magnetic random access memory (MRAM). However, the fabrication of repeatable, high quality magnetic tunnel junctions is still problematic. This thesis investigates methods to improve and quantify the quality of tunnel junction fabrication. Superconductor-insulator-superconductor (SIS) and superconductor-insulator ferromagnet(SIF) tunnel junctions were used to develop the fabrication route, due to the ease of identifying their faults. The effect on SIF device quality of interchanging the top and bottom electrodes was monitored. The relationship between the superconducting and normal state characteristics of SIS junctions was investigated. Criteria were formulated to identify devices in which tunneling is not the principal conduction mechanism innormal metal-insulator-normal metal junctions. Magnetic tunnel junctions (MTJs) were produced on the basis of the fabrication route developed with SIS and SIF devices. MTJs in which tunneling is the principal conduction mechanism do not necessarily demonstrate high MR, due to effects such as magnetic coupling between the electrodes and spin scattering. Transmission electron microscope images were used to study magnetic tunnel junction structure, revealing an amorphous barrier and crystalline electrodes. The decoration of pinholes and weak-links by copper electrodeposition was investigated. A new technique is presented to identify the number of copper deposits present in a thin insulating film. The effect of roughness, aluminium thickness and voltage on the number of pinholes and weak-links per unit area was studied. High frequency testing of read heads at wafer level was performed with a network analyser. Design implications for read head geometry were investigated, independent of magnetic performance. This technique has great potential to aid the rapid development of read and write heads whilst improving understanding of the system.
2

Non-equilibrium superconductivity induced by X-ray photons

Brink, Paul Louis January 1995 (has links)
No description available.
3

Spin-dependant transport in lateral nano-devices based on magnetic tunnel junctions

Urech, Mattias January 2006 (has links)
This thesis is an experimental study of spin dependent transport in nanoscale ferromagnetic tunnel junction arrays and lateral multi-terminal devices with normal metal and superconducting spin transport channels. Two-, three-, and five-junction arrays have been fabricated in the form of lateral circuits and characterized using variable temperature magneto-transport measurements. The smallest inter-junction separation achieved was 65 nm. No significant enhancement in the sequential magneto-resistance (MR) was observed, which is attributed to the combined effect of short spin diffusion length in the ferromagnetic electrodes and high resistance of the tunnel barriers used. A substantially weaker bias dependence of the MR is observed for double junctions than for single junctions, consistent with the theoretical expectations. Spin diffusion and relaxation in one-dimensional normal metal channels is studied using a novel multi-terminal device. The device has multiple ferromagnetic detector electrodes for an in-situ determination of the spin transport parameters. Such configuration has a great advantage as it eliminates sample-to-sample uncertainties in the physical properties studied. A three terminal device having a pair of detector electrodes placed symmetrically about the injection point is used to directly demonstrate decoupling of spin and charge current in nanostructures. Furthermore, by varying the thickness of the normal metal channel on the scale of the mean free path the surface contribution to spin relaxation is measured and compared to the bulk spin scattering rate. It is found that for Al surface scattering makes a weak contribution to the overall spin relaxation rate, the result that should be important for a number of proposed thin film spin-based devices. The interplay between non-equilibrium magnetism and superconductivity is studied in a ferromagnetic/superconductor single electron transistor. Spin imbalance in the base is controlled by the bias voltage applied to the magnetic emitter/collector as well as the relative orientation of their magnetic moments. A strong magneto-transport effect is observed and attributed to a suppression of the superconducting gap in the center electrode by the spin imbalance in the antiparallel state of the device. The intrinsic spin relaxation parameters for the center electrode, important for interpreting the data are studied in a separate experiment using spin injection into a one-dimensional superconducting channel. It is found that the spin accumulation increases substantially on transition into the superconducting state while the spin diffusion length is reduced. These results represent a new way of combining magnetism and superconductivity on the nano-scale. / QC 20100924
4

Spin polarised tunnel junctions based on half-metallic manganites

Jo, Moon-Ho January 2001 (has links)
No description available.
5

High efficiency tunnel junctions for use in tunnel junction-enabled III-Nitride optoelectronics

Jamal-Eddine, Zane Ali January 2021 (has links)
No description available.
6

Perpendicular magnetic tunnel junction with W seed and capping layers

Almasi, H., Sun, C. L., Li, X., Newhouse-Illige, T., Bi, C., Price, K. C., Nahar, S., Grezes, C., Hu, Q., Khalili Amiri, P., Wang, K. L., Voyles, P. M., Wang, W. G. 21 April 2017 (has links)
We present a study on perpendicular magnetic tunnel junctions with W as buffer and capping layers. A tunneling magnetoresistance of 138% and an interfacial magnetic anisotropy of 1.67 erg/cm(2) were obtained in optimally annealed samples. However, after extended annealing at 420 degrees C, junctions with W layers showed extremely small resistance due to interdiffusion of W into the MgO barrier. In contrast, in Ta-based junctions, the MgO barrier remained structurally stable despite disappearance of magnetoresistance after extended annealing due to loss of perpendicular magnetic anisotropy. Compared with conventional tunnel junctions with in-plane magnetic anisotropy, the evolution of tunneling conductance suggests that the relatively low magnetoresistance in perpendicular tunnel junctions is related to the lack of highly polarized Delta(1) conducting channel developed in the initial stage of annealing. Published by AIP Publishing.
7

Quasiparticle and phonon transport in superconducting particle detectors

Burnell, Gavin January 1998 (has links)
For over a decade now there has been much research into the use of superconductors in X-ray, gamma ray and other particle detectors. Detectors based on superconductor-insulator-superconductor(SIS) and superconductor-insulator-normal metal(SIN) tunnel junctions have been widely developed. To date, the predicted excellent energy resolving ability of such detectors has not been realised. Various energy loss processes have been suggested as possible causes for the failure to obtain energy resolutions close to the thermodynamic and quantum limits predicted. In my experiments, I have used both SIS and SIN tunnel junctions to investigate the transport of quasiparticles and phonons in structures similar to the proposed detector designs. I have used multiple distributed junction geometries to perform injection-detection type experiments. One junction is used to inject quasiparticles and/or phonons into the device structure, whilst the current-voltage characteristic of a second junction is monitored for a response to the injected quasiparticles/phonons. Using this type of experimental set-up, I have measured the transport of non-thermal equilibrium quasiparticles in an epitaxial niobium film. Using a simple random walk model, I have calculated an effective lifetime for quasiparticles. I have not observed the process of quasiparticle mulitiplication that has been observed by other researchers - I attribute this to differences in the microstructure of my devices and comment on the implications of this to possible quasiparticle loss mechanisms. I have investigated the energy transport in a device with a number of SIN tunnel junctions connected to a common normal metal electrode. Phonon transport via the substrate is found to be the dominant coupling process between the tunnel junctions, although the device design can result in some junctions being effectively shielded from the substrate phonons by the common electrode. Finally, the possibilities of using a superconducting heterostructure to control the rate at which quasiparticles recombine and emit phonons have been explored. Excessive recombination is believed to limit the effectiveness of large areas SIN tunnel junctions as thermometers for particle detecting bolometers.
8

FABRICATION AND CHARACTERIZATION OF MOLECULAR SPINTRONICS DEVICES

Tyagi, Pawan 01 January 2008 (has links)
Fabrication of molecular spin devices with ferromagnetic electrodes coupled with a high spin molecule is an important challenge. This doctoral study concentrated on realizing a novel molecular spin device by the bridging of magnetic molecules between two ferromagnetic metal layers of a ferromagnetic-insulator-ferromagnetic tunnel junction on its exposed pattern edges. At the exposed sides, distance between the two metal electrodes is equal to the insulator film thickness; insulator film thickness can be precisely controlled to match the length of a target molecule. Photolithography and thin-film deposition were utilized to produce a series of tunnel junctions based on molecular electrodes of multilayer edge molecular electrodes (MEME) for the first time. In order to make a microscopic tunnel junction with low leakage current to observe the effect of ~10,000 molecules bridged on the exposed edge of a MEME tunnel barrier, growth conditions were optimized; stability of a ~2nm alumina insulator depended on its ability to withstand process-induced mechanical stresses. The conduction mechanism was primarily 1) tunneling from metal electrode to oranometalic core by tunneling through alkane tether that acts as a tunnel barrier 2) rapid electron transfer within the oranometalic Ni-CN-Fe cube and 3) tunneling through alkane tether to the other electrode. Well defined spin-states in the oranometalic Ni-CN-Fe cube would determine electron spin-conduction and possibly provide a mechanism for coupling. MEME with Co/NiFe/AlOx/NiFe configurations exhibited dramatic changes in the transport and magnetic properties after the bridging of oranometalic molecular clusters with S=6 spin state. The molecular cluster produced a strong antiferromagnetic coupling between two ferromagnetic electrodes to the extent, with a lower bound of 20 erg/cm,2 that properties of individual magnetic layers changed significantly at RT. Magnetization, ferromagnetic resonance and magnetic force microscopy studies were performed. Transport studies of this configuration of MEME exhibited molecule-induced current suppression by ~6 orders by blocking both molecular channels and tunneling between metal leads in the planar 25μm2 tunnel junction area. A variety of control experiments were performed to validate the current suppression observation, especially critical due to observed corrosion in electrochemical functionalization step. The spin devices were found to be sensitive to light radiation, temperature and magnetic fields. Along with the study of molecular spin devices, several interesting ideas such as ~9% energy efficient ultrathin TaOx based photocell, simplified version of MEME fabrication, and chemical switching were realized. This doctoral study heralds a novel molecular spin device fabrication scheme; these molecular electrodes allow the reliable study of molecular components in molecular transport.
9

Intrinsic Disorder Effects and Persistent Current Studies of YBCO Thin Films and Superconducting Tunnel Junctions

Mansour, Ahmad Ibrahim 11 1900 (has links)
This thesis studies the intrinsic disorder effects and the transport and magnetic properties of ring-shaped epitaxial thin films and superconducting tunnel junctions (STJs) of the high temperature superconductor YBa$_2$Cu$_3$O$_{7-delta}$. We used an unconventional contactless technique that allows us to directly measure the persistent current of superconducting rings. In order to study the disorder effects on the persistent current, we slowly increased oxygen vacancies in YBa$_2$Cu$_3$O$_{7-delta}$ by changing $delta$ from 0.03 to 0.55 in steps of $sim$0.021. Monitoring the corresponding changes in the temperature dependence of the persistent current revealed an anomaly in its flow within a certain range of disorder. We found that this anomaly is directly related to the occurrence of a spinodal decomposition of oxygen vacancies in YBCO, which we explain as a competition between two coexisting phases, oxygen rich and oxygen deficient. The analysis of the time dependence of the persistent current revealed that increasing oxygen vacancies transforms the vortex structure from quasi-lattice into a glass and subsequently into a pinned liquid phase. Our results also exhibited the first evidence of self-organization of the vortex structure with increasing disorder. We also performed the first direct measurement of the temperature dependence of the $c$-axis persistent current ($J_c$) that is purely due to tunnelling Cooper-pairs through intrinsic Josephson junctions (IJJs) of YBCO. This is made possible by incorporating IJJs of YBCO into ring-shaped films. Then, we studied the temperature dependence of the persistent current of YBCO nanowires embedded in SrTiO$_3$-barrier integrated between two semi-ring-shaped YBCO thin films and systematically varied the nanowires length. Our observations revealed that $J_c$ has two different temperature dependences: a GL-dependence ($J_c propto (T_c - T)^{3/2}$) at low temperatures which we found the same in all studied samples, and another power law dependence ($J_c propto (T_c - T)^{alpha > 3/2}$) at high temperatures which turned out to depend on the length of the nanowires. We attribute the cross-over between these two temperature dependences to the depinning and the dissipative motion of vortices. These experimental approaches and findings not only provide new information, but more importantly open new avenues of investigating the transport and magnetic properties of superconducting films, junctions, and nanowires.
10

Properties of Fe/ZnSe Heterostructures : A Step Towards Semiconductor Spintronics

Gustavsson, Fredrik January 2002 (has links)
In the present thesis, the properties at ferromagnet/semiconductor interfaces, relevant for semiconductor spintronics applications, are addressed. Semiconductor spintronics refers to the possibility of storing information using the electron spin, additional to the electron charge, for enhanced flexibility in nanoscale semiconductor devices. The system under focus is the Fe/ZnSe(001) heterostructure, where ZnSe is a wide gap semiconductor ideally compatible with GaAs. The heterostructures are grown on GaAs(001) substrates by molecular beam epitaxy. From various electron-beam based diffraction, spectroscopy and microscopy techniques, it is shown that Fe grows epitaxially and predominantly in a layer-by-layer mode on ZnSe(001) with no presence of chemically reacted phases or interdiffusion. An in-plane uniaxial magnetic anisotropy (UMA) is detected for thin Fe films on ZnSe(001) by magnetometry, thus opposing the cubic symmetry of bcc Fe. From first principles calculations, the unidirectional sp3-bonds from ZnSe are shown to induce this uniaxiality. Moreover, an in-plane anisotropic lattice relaxation of Fe is found experimentally, seemingly as a consequence of the sp3-bonds, giving an additional UMA contribution via magneto-elastic coupling. It is proposed that these two effects are responsible for the much-debated UMA observed in Fe/semiconductor structures in general. The interface magnetism is probed by x-ray magnetic circular dichroism and Mössbauer spectroscopy. It is found that the magnetic moment at the interface is comparable or even enhanced with respect to the bulk Fe. These two experiments are believed to provide the first unambiguous proof of a persistent bulk magnetic moment at a transition metal/semiconductor interface. Spin-polarised transport measurements are performed on Fe/ZnSe/FeCo magnetic tunnel junctions. A magnetoresistance of 16% is found at low temperature, which evidences both the existence of interface spin polarisation, as inferred from the bulk magnetic moment above, and that the spin polarisation can be transmitted across the semiconductor barrier layer.

Page generated in 0.0975 seconds