Spelling suggestions: "subject:"ringduring instability"" "subject:"ringduring unstability""
1 |
Spectral Approaches for Characterizing Heterogeneity in Infectious Disease ModelsChoe, Seoyun 01 January 2024 (has links) (PDF)
Heterogeneity, influenced by diverse factors such as age, gender, immunity, behavior, and spatial distribution, plays a critical role in the dynamics of infectious disease transmission. Discrete mathematical structures, including matrices and graphs, can offer effective tools for modeling the interactions among these diverse factors, resulting heterogeneous epidemiological models. This dissertation explores analytical approaches, specifically utilizing eigenvalues and eigenvectors of discrete structures, to characterize heterogeneity within mathematical models of infectious diseases. Theoretical results, along with numerical simulations, enhance our understanding of heterogeneous epidemiological processes and their significant implications for disease control strategies.
In this dissertation, we introduce a unified approach to establish the final size formula in heterogeneous epidemic models, based on a new concept of “total infectious contacts” as an eigenvector-based aggregation of disease compartments. This approach allows us to identify the peak of total infectious contacts, offering a novel method to pinpoint the turning point of a disease outbreak. Furthermore, we examine spatial heterogeneity through two distinct mathematical frameworks: the Lagrangian and Eulerian models. The Lagrangian model assesses the epidemiological consequences of spatio-temporal residence time matrices, while the Eulerian model investigates “Turing instability” as a new underlying mechanism for spatial heterogeneity observed in disease prevalence data.
|
2 |
Dynamique spatio-temporelle et identification des diffusions non linéaires / Spation-temporal dynamics and identification of nonlinear diffusionsAli, Naamat 11 July 2013 (has links)
Cette thèse est consacrée à l’étude des systèmes d’équations différentielles ordinaires, et ceux aux dérivées partielles paraboliques issus de modèles de dynamique des populations et de la biologie. L’objectif principal est de faire l’analyse mathématique, la simulation numérique ainsi que l’identification des diffusions croisées dans les modèles construits. Nous présentons d’abord un système de réaction-diffusion modélisant la croissance de plantes en compétition spatiale dans un milieu saturé. Nous effectuons par la suite l’étude théorique et numérique de tels systèmes, ainsi que l’étude des problèmes d’identification des termes de diffusions croisées. Ensuite, nous proposons un modèle proie-prédateur de type Leslie-Gower modifié avec une fonction de réponse de type Crowley-Martin. Nous étudions dans un premier temps la dynamique temporelle globale du modèle considéré, et nous présentons des simulations numériques pour illustrer les résultats théoriques. En outre, nous introduisons la dimension spatiale dans le modèle dynamique considéré, et nous effectuons une analyse théorique complète de la dynamique spatio-temporelle du modèle. / This thesis is devoted to the study of ordinary differential systems, and systems of non linear parabolic PDEs resulting from models of population dynamics and biology. The main objective is to perform mathematical analysis, numerical simulations, and identification of cross-diffusion in built models. We first present a reaction-diffusion system that models the spatial competition of plants in a saturated environment. We then perform a theoretical and a numerical study of such systems, and handle the identification of cross-diffusion problem. Secondly, we propose a modified Leslie-Gower-type predator-prey model with a Crowley-Martin type functional response. Within this context, we study the global temporal dynamics of the considered model, and present numerical simulations as illustration of the theoretical results. Finally, we introduce the spatial dimension in the previous dynamical model, and perform a comprehensive theoretical analysis of the spatio-temporal model.
|
3 |
Applications of nonequilibrium statistical physics to ecological systemsGuttal, Vishwesha 24 June 2008 (has links)
No description available.
|
4 |
Pattern formation in neural circuits by the interaction of travelling waves with spike-timing dependent plasticityBennett, James Edward Matthew January 2014 (has links)
Spontaneous travelling waves of neuronal activity are a prominent feature throughout the developing brain and have been shown to be essential for achieving normal function, but the mechanism of their action on post-synaptic connections remains unknown. A well-known and widespread mechanism for altering synaptic strengths is spike-timing dependent plasticity (STDP), whereby the temporal relationship between the pre- and post-synaptic spikes determines whether a synapse is strengthened or weakened. Here, I answer the theoretical question of how these two phenomenon interact: what types of connectivity patterns can emerge when travelling waves drive a downstream area that implements STDP, and what are the critical features of the waves and the plasticity rules that shape these patterns? I then demonstrate how the theory can be applied to the development of the visual system, where retinal waves are hypothesised to play a role in the refinement of downstream connections. My major findings are as follows. (1) Mathematically, STDP translates the correlated activity of travelling waves into coherent patterns of synaptic connectivity; it maps the spatiotemporal structure in waves into a spatial pattern of synaptic strengths, building periodic structures into feedforward circuits. This is analogous to pattern formation in reaction diffusion systems. The theory reveals a role for the wave speed and time scale of the STDP rule in determining the spatial frequency of the connectivity pattern. (2) Simulations verify the theory and extend it from one-dimensional to two-dimensional cases, and from simplified linear wavefronts to more complex realistic and noisy wave patterns. (3) With appropriate constraints, these pattern formation abilities can be harnessed to explain a wide range of developmental phenomena, including how receptive fields (RFs) in the visual system are refined in size and topography and how simple-cell and direction selective RFs can develop. The theory is applied to the visual system here but generalises across different brain areas and STDP rules. The theory makes several predictions that are testable using existing experimental paradigms.
|
5 |
From local to global: Complex behavior of spatiotemporal systems with fluctuating delay timesWang, Jian 17 April 2014 (has links) (PDF)
The aim of this thesis is to investigate the dynamical behaviors of spatially extended systems with fluctuating time delays. In recent years, the study of spatially extended systems and systems with fluctuating delays has experienced a fast growth. In ubiquitous natural and laboratory situations, understanding the action of time-delayed signals is a crucial for understanding the dynamical behavior of these systems. Frequently, the length of the delay is found to change with time. Spatially extended systems are widely studied in many fields, such as chemistry, ecology, and biology. Self-organization, turbulence, and related nonlinear dynamic phenomena in spatially extended systems have developed into one of the most exciting topics in modern science. The first part of this thesis considers the discrete system. Diffusively coupled map lattices with a fluctuating delay are used in the study. The uncoupled local dynamics of the considered system are represented by the delayed logistic map. In particular, the influences of diffusive coupling and fluctuating delay are studied. To observe and understand the influences, the results for the considered system are compared with coupled map lattices without delay and with a constant delay as well as with the uncoupled logistic map with fluctuating delays. Identifying different patterns, determining the existence of traveling wave solutions, and specifying the fully synchronized stable state are the focus of this part of the study. The Lyapunov exponent, the master stability function, spectrum analysis, and the structure factor are used to characterize the different states and the transitions between them. The second part examines the continuous system. The delay is introduced into the reactionterm of the Fisher-KPP equation. The focus of this part of study is the time-delay-induced Turing instability in one-component reaction-diffusion systems. Turing instability has previously only been found in multiple-component reaction-diffusion systems. However, this work demonstrates with the help of the stability exponent that fluctuating delay can result in Turing instability in one-component reaction-diffusion systems as well. / Ziel der vorliegenden Arbeit ist die Untersuchung der Einflüsse der zeitlich fluktuierenden Verzögerungen in räumlich ausgedehnten diffusiven Systemen. Durch den Vergleich von Systemen mit konstanter Verzögerung bzw. Systemen ohne räumliche Kopplung erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise der Dynamik des räumlich ausgedehnten diffusiven Systems mit fluktuierenden Verzögerungen. Im ersten Teil werden diskrete Systeme in Form von diffusiven Coupled Map Lattices untersucht. Als die lokale iterierte Abbildung des betrachteten Systems wird die logistische Abbildung mit Verzögerung gewählt. In diesem Teil liegt der Fokus auf Musterbildung, Existenz von Multiattraktoren und laufenden Wellen sowie der Möglichkeit der vollen Synchronisation. Masterstabilitätsfunktion, Lyapunov Exponent und Spektrumsanalyse werden benutzt, um das dynamische Verhalten zu verstehen. Im zweiten Teil betrachten wir kontinuierliche Systeme. Hier wird die Fisher-KPP Gleichung mit Verzögerungen im Reaktionsteil untersucht. In diesem Teil liegt der Fokus auf der Existenz der Turing Instabilität. Mit Hilfe von analytischen und numerischen Berechnungen wird gezeigt, dass bei fluktuierenden Verzögerungen eine Turing Instabilität auch in 1-Komponenten-Reaktions-Diffusionsgleichungen gefunden werden kann
|
6 |
From local to global: Complex behavior of spatiotemporal systems with fluctuating delay times: From local to global: Complex behavior of spatiotemporal systemswith fluctuating delay timesWang, Jian 05 February 2014 (has links)
The aim of this thesis is to investigate the dynamical behaviors of spatially extended systems with fluctuating time delays. In recent years, the study of spatially extended systems and systems with fluctuating delays has experienced a fast growth. In ubiquitous natural and laboratory situations, understanding the action of time-delayed signals is a crucial for understanding the dynamical behavior of these systems. Frequently, the length of the delay is found to change with time. Spatially extended systems are widely studied in many fields, such as chemistry, ecology, and biology. Self-organization, turbulence, and related nonlinear dynamic phenomena in spatially extended systems have developed into one of the most exciting topics in modern science. The first part of this thesis considers the discrete system. Diffusively coupled map lattices with a fluctuating delay are used in the study. The uncoupled local dynamics of the considered system are represented by the delayed logistic map. In particular, the influences of diffusive coupling and fluctuating delay are studied. To observe and understand the influences, the results for the considered system are compared with coupled map lattices without delay and with a constant delay as well as with the uncoupled logistic map with fluctuating delays. Identifying different patterns, determining the existence of traveling wave solutions, and specifying the fully synchronized stable state are the focus of this part of the study. The Lyapunov exponent, the master stability function, spectrum analysis, and the structure factor are used to characterize the different states and the transitions between them. The second part examines the continuous system. The delay is introduced into the reactionterm of the Fisher-KPP equation. The focus of this part of study is the time-delay-induced Turing instability in one-component reaction-diffusion systems. Turing instability has previously only been found in multiple-component reaction-diffusion systems. However, this work demonstrates with the help of the stability exponent that fluctuating delay can result in Turing instability in one-component reaction-diffusion systems as well. / Ziel der vorliegenden Arbeit ist die Untersuchung der Einflüsse der zeitlich fluktuierenden Verzögerungen in räumlich ausgedehnten diffusiven Systemen. Durch den Vergleich von Systemen mit konstanter Verzögerung bzw. Systemen ohne räumliche Kopplung erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise der Dynamik des räumlich ausgedehnten diffusiven Systems mit fluktuierenden Verzögerungen. Im ersten Teil werden diskrete Systeme in Form von diffusiven Coupled Map Lattices untersucht. Als die lokale iterierte Abbildung des betrachteten Systems wird die logistische Abbildung mit Verzögerung gewählt. In diesem Teil liegt der Fokus auf Musterbildung, Existenz von Multiattraktoren und laufenden Wellen sowie der Möglichkeit der vollen Synchronisation. Masterstabilitätsfunktion, Lyapunov Exponent und Spektrumsanalyse werden benutzt, um das dynamische Verhalten zu verstehen. Im zweiten Teil betrachten wir kontinuierliche Systeme. Hier wird die Fisher-KPP Gleichung mit Verzögerungen im Reaktionsteil untersucht. In diesem Teil liegt der Fokus auf der Existenz der Turing Instabilität. Mit Hilfe von analytischen und numerischen Berechnungen wird gezeigt, dass bei fluktuierenden Verzögerungen eine Turing Instabilität auch in 1-Komponenten-Reaktions-Diffusionsgleichungen gefunden werden kann
|
Page generated in 0.0828 seconds