• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 65
  • 21
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 290
  • 73
  • 57
  • 39
  • 38
  • 27
  • 27
  • 26
  • 26
  • 24
  • 24
  • 23
  • 23
  • 23
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bacteriophage typing of Salmonella pullorum

Castellano, Gabriel Angelo January 2011 (has links)
Typescript, etc. / Digitized by Kansas State University Libraries
2

A molecular study of Pakistani populations using short tandem repeat markers

Hadi, Syed Sibte January 2001 (has links)
No description available.
3

In vivo bioluminescent imaging in fish and intraspecies typing of Yersinia ruckeri

Ostrowski, Christopher 01 February 2012 (has links)
Yersinia ruckeri is the bacterial agent causing enteric redmouth disease (ERM) in rainbow trout leading to economic losses in intensive aquaculture. There are two main serovars and several minor groups based on O-antigens. The first goal of this thesis was to examine the difference between serotypes of Y. ruckeri in the course of infection in fish by applying in vivo bioluminescent imaging in rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch). In infection trials, the bioluminescent strains were infective, but the bioluminescent signal was not detected in fish infected with bacterial loads of 107 colony forming units per gram of kidney tissue. Skin and scales and the kidney blocked the luminescent signal emitted from the bacteria. The second goal of this thesis was to identify genetic markers which correlate with traditional O-antigen serotyping reactions. Using the sequences of genes which are part of the lipopolysaccharide biosynthetic pathway, oligonucleotide primers were designed to be complimentary to a fragment of wzx, the O-antigen flippase, and to wzy, the O-antigen polymerase, of serotype 1 Y. ruckeri strain RS 11. When these primers were used in polymerase chain reaction, an 1183 bp fragment of wzx and a 755 bp fragment of wzy were seen with DNA from 8 serovar 1 and 9 serovar 1a strains and not from other serovars identified by rabbit anti-sera agglutination. Southern blotting suggested there was little homology between serovar 1 wzx and wzy, and the same genes of the remaining serovars if present.
4

Molecular classification of coxsackie A virus reference and wild type strains on the basis of RFLP analysis and sequencing of the 5'-UTR : structural and evolutionary aspects

Siafakas, Nikolaos January 2002 (has links)
No description available.
5

Entwicklung neuer Markersysteme für die ancient DNA-Analyse Erweiterung des molekulargenetischen Zugangs zu kultur- und sozialgeschichtlichen Fragestellungen der prähistorischen Anthropologie /

Schmidt, Diane Manuela. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Göttingen.
6

Molecular typing and evolution of Salmonella enterica serovar Typhimurium

Hu, Honghua January 2005 (has links)
Salmonella enterica serovar Typhimurium is a common cause of salmonellosis among humans and animals worldwide. In Australia, Typhimurium is responsible for over half of the salmonellosis cases. The Anderson phage-typing scheme is the primary means of long-term surveillance of Typhimurium outbreak isolates, and has played an important role in epidemiology. However, there exist quite a number of strains of Typhimurium that cannot be defined by the phage-typing scheme. Furthermore, the knowledge of evolutionary relationships among isolates of different phage types is still very limited and the genetic basis of phage type variation remains largely unknown. To address these issues, this study focused on molecular typing and evolution of Typhimurium. Fluorescent amplified-fragment length polymorphism (AFLP) was applied to 46 Typhimurium isolates comprising nine phage types in Australia using the restriction enzymes MseI and EcoRI and MseI +1 / EcoRI +1 primer pair combinations. The selected phage types, DT9, DT135, DT64, DT44, DT126, DT12a, DT1, DT141 and DT108, have been dominant or frequent phage types in animal and human infections in Australia in recent years. AFLP in the present study showed a very good discrimination power with Simpson index of diversity of 0.98, 35 different AFLP patterns were observed in the 46 isolates studied. The tree based on AFLP patterns showed good correlation with phage type, grouped most Typhimurium isolates by phage type, and differentiated all nine phage types. Furthermore, 84 phage-type specific polymorphic AFLP fragments, for which presence or absence correlated with phage type (including 25 with one exception to phage-type specificity) were observed in the 46 strains studied. Eighteen phage-type specific AFLP fragments were cloned and sequenced. Sixteen are of known genes or have a homologue in the databases. It was found a predominance of phage and plasmid genes rather than mutational changes in the AFLP fragments studied. Of the 18 cloned and sequenced AFLP fragments, only four relate to mutational changes in the S. enterica chromosome, the other 14 comprise DNA of mobile elements: nine are phage related, three are plasmid related and two are gain of DNA from unknown origin. Twelve of the 18 sequenced phage-type specific AFLP markers are polymorphic because the DNA is present or absent as indicated by Southern hybridization. Two of these markers were successfully used in preliminary PCR-based typing of 30 DT9 and 29 DT135 isolates from worldwide collections. 27 of the 30 DT9 isolates and all DT135 isolates tested were correctly categorized. The results implied a good potential to use the sequence of these fragments as the basis for a multiplex PCR or a microarray based molecular �phage� typing method for Typhimurium. This thesis also studied the molecular evolutionary relationships among the same set of 46 Typhimurium isolates using mutational changes detected by AFLP, or analysis of intergenic regions and their flanking genes in genome sequences. The complete genome sequence of Typhimurium LT2 was analysed by computer modelled AFLP. The polymorphic AFLP fragments, which matched with the modelled LT2 AFLP fragments, were amplified and sequenced by LT2 genome based primers to determine the changes. Forty-nine intergenic regions with higher pairwise differences between LT2 and Typhi CT18 were amplified and sequenced using LT2 genome based primers for one isolate of each phage type. 51 polymorphic sites were detected consisting of 18 in AFLP fragments and 33 in intergenic regions or their flanking genes. PCR-RFLP (restriction fragment length polymorphism) and SNaPshot were used to further investigate the distribution of the single nucleotide polymorphisms (SNPs) detected in intergenic regions in all isolates studied. Of the 18 mutational changes detected in AFLP fragments, eight were indels (insertions / deletions) and ten single base substitutions. Of the eight indels, four were in genes, three in intergenic regions, and one covered adjacent intergenic and coding regions. The four indels in genes all caused frameshift mutations, including three single base indels and one 19 bp deletion. Of the ten substitutions, one was in an intergenic region and nine in genes comprising three synonymous and six non-synonymous substitutions. Of the 33 polymorphic sites detected from sequences of 23 intergenic regions and their flanking genes, one was IS200 insertion and 32 single nucleotide polymorphisms (SNPs), of which 30 were single base substitutions and two were single base indels. Nine of the 33 variations were found in the flanking genes, which were all single base substitutions comprising four synonymous, four non-synonymous substitutions and one non-sense mutation. More non-synonymous than synonymous substitutions were found for those in coding regions within Typhimurium, indicating that slightly deleterious intraspecies mutations can be fixed within clones, such as various lineages of Typhimurium. The 51 polymorphic sites, which were inferred from sequences of both mutation related AFLP fragments, and intergenic regions and their flanking genes, gave a single phylogenetic tree of the 46 Typhimurium isolates studied. All sequences involved were compared with the homologous sequences in the available S. enterica genome sequences for serovars Typhi, Paratyphi A, Gallinarum, Enteritidis and Pullorum and this enabled the determination of the direction of the mutational changes in the isolates studied and the root of the phylogenetic tree. There were only two events inferred to have occurred twice, the remaining 49 polymorphisms can be explained by a single event. The data indicated that Typhimurium has a very strong clonal structure with a very low level of recombination over the time for diversification of Typhimurium as majority of clonal variations are from point mutations rather than recombination. The phylogenetic tree based on mutational changes showed that most Typhimurium isolates of a given phage type are in the same evolutionary group, but that some phage types appear to have arisen more than once. Comparison of the phylogenetic tree with AFLP data gave examples of unrelated isolates of a given phage type having common AFLP fragments comprising plasmid or phage genes, supporting the view that phage type can be determined by presence of specific phages or plasmids. The mutation-based tree showed that six of the nine phage types studied appeared to have a single origin, at least for the isolates studied. It also found that DT1 and DT44 had two independent origins even for the limited set of strains used. The distribution of DT12a isolates into two groups could be explained that the group of three DT12a isolates were derived from the other group of four DT12a isolates, where the root of the tree might be. The data also confirmed that DT64 arose from DT9. The phylogenetic tree that was generated based on essentially mutational changes provides clear relationships of the closely related Typhimurium isolates with high level of consistency and reasonable confidence. This study provided one of the few analyses of relationships of isolates within a clone. Matching actual AFLP with computer modeled AFLP and sequencing intergenic regions provide very good new strategies to identify mutational polymorphisms and to study the molecular evolutionary relationships in the closely related isolates.
7

Molecular typing and evolution of Salmonella enterica serovar Typhimurium

Hu, Honghua January 2005 (has links)
Salmonella enterica serovar Typhimurium is a common cause of salmonellosis among humans and animals worldwide. In Australia, Typhimurium is responsible for over half of the salmonellosis cases. The Anderson phage-typing scheme is the primary means of long-term surveillance of Typhimurium outbreak isolates, and has played an important role in epidemiology. However, there exist quite a number of strains of Typhimurium that cannot be defined by the phage-typing scheme. Furthermore, the knowledge of evolutionary relationships among isolates of different phage types is still very limited and the genetic basis of phage type variation remains largely unknown. To address these issues, this study focused on molecular typing and evolution of Typhimurium. Fluorescent amplified-fragment length polymorphism (AFLP) was applied to 46 Typhimurium isolates comprising nine phage types in Australia using the restriction enzymes MseI and EcoRI and MseI +1 / EcoRI +1 primer pair combinations. The selected phage types, DT9, DT135, DT64, DT44, DT126, DT12a, DT1, DT141 and DT108, have been dominant or frequent phage types in animal and human infections in Australia in recent years. AFLP in the present study showed a very good discrimination power with Simpson index of diversity of 0.98, 35 different AFLP patterns were observed in the 46 isolates studied. The tree based on AFLP patterns showed good correlation with phage type, grouped most Typhimurium isolates by phage type, and differentiated all nine phage types. Furthermore, 84 phage-type specific polymorphic AFLP fragments, for which presence or absence correlated with phage type (including 25 with one exception to phage-type specificity) were observed in the 46 strains studied. Eighteen phage-type specific AFLP fragments were cloned and sequenced. Sixteen are of known genes or have a homologue in the databases. It was found a predominance of phage and plasmid genes rather than mutational changes in the AFLP fragments studied. Of the 18 cloned and sequenced AFLP fragments, only four relate to mutational changes in the S. enterica chromosome, the other 14 comprise DNA of mobile elements: nine are phage related, three are plasmid related and two are gain of DNA from unknown origin. Twelve of the 18 sequenced phage-type specific AFLP markers are polymorphic because the DNA is present or absent as indicated by Southern hybridization. Two of these markers were successfully used in preliminary PCR-based typing of 30 DT9 and 29 DT135 isolates from worldwide collections. 27 of the 30 DT9 isolates and all DT135 isolates tested were correctly categorized. The results implied a good potential to use the sequence of these fragments as the basis for a multiplex PCR or a microarray based molecular �phage� typing method for Typhimurium. This thesis also studied the molecular evolutionary relationships among the same set of 46 Typhimurium isolates using mutational changes detected by AFLP, or analysis of intergenic regions and their flanking genes in genome sequences. The complete genome sequence of Typhimurium LT2 was analysed by computer modelled AFLP. The polymorphic AFLP fragments, which matched with the modelled LT2 AFLP fragments, were amplified and sequenced by LT2 genome based primers to determine the changes. Forty-nine intergenic regions with higher pairwise differences between LT2 and Typhi CT18 were amplified and sequenced using LT2 genome based primers for one isolate of each phage type. 51 polymorphic sites were detected consisting of 18 in AFLP fragments and 33 in intergenic regions or their flanking genes. PCR-RFLP (restriction fragment length polymorphism) and SNaPshot were used to further investigate the distribution of the single nucleotide polymorphisms (SNPs) detected in intergenic regions in all isolates studied. Of the 18 mutational changes detected in AFLP fragments, eight were indels (insertions / deletions) and ten single base substitutions. Of the eight indels, four were in genes, three in intergenic regions, and one covered adjacent intergenic and coding regions. The four indels in genes all caused frameshift mutations, including three single base indels and one 19 bp deletion. Of the ten substitutions, one was in an intergenic region and nine in genes comprising three synonymous and six non-synonymous substitutions. Of the 33 polymorphic sites detected from sequences of 23 intergenic regions and their flanking genes, one was IS200 insertion and 32 single nucleotide polymorphisms (SNPs), of which 30 were single base substitutions and two were single base indels. Nine of the 33 variations were found in the flanking genes, which were all single base substitutions comprising four synonymous, four non-synonymous substitutions and one non-sense mutation. More non-synonymous than synonymous substitutions were found for those in coding regions within Typhimurium, indicating that slightly deleterious intraspecies mutations can be fixed within clones, such as various lineages of Typhimurium. The 51 polymorphic sites, which were inferred from sequences of both mutation related AFLP fragments, and intergenic regions and their flanking genes, gave a single phylogenetic tree of the 46 Typhimurium isolates studied. All sequences involved were compared with the homologous sequences in the available S. enterica genome sequences for serovars Typhi, Paratyphi A, Gallinarum, Enteritidis and Pullorum and this enabled the determination of the direction of the mutational changes in the isolates studied and the root of the phylogenetic tree. There were only two events inferred to have occurred twice, the remaining 49 polymorphisms can be explained by a single event. The data indicated that Typhimurium has a very strong clonal structure with a very low level of recombination over the time for diversification of Typhimurium as majority of clonal variations are from point mutations rather than recombination. The phylogenetic tree based on mutational changes showed that most Typhimurium isolates of a given phage type are in the same evolutionary group, but that some phage types appear to have arisen more than once. Comparison of the phylogenetic tree with AFLP data gave examples of unrelated isolates of a given phage type having common AFLP fragments comprising plasmid or phage genes, supporting the view that phage type can be determined by presence of specific phages or plasmids. The mutation-based tree showed that six of the nine phage types studied appeared to have a single origin, at least for the isolates studied. It also found that DT1 and DT44 had two independent origins even for the limited set of strains used. The distribution of DT12a isolates into two groups could be explained that the group of three DT12a isolates were derived from the other group of four DT12a isolates, where the root of the tree might be. The data also confirmed that DT64 arose from DT9. The phylogenetic tree that was generated based on essentially mutational changes provides clear relationships of the closely related Typhimurium isolates with high level of consistency and reasonable confidence. This study provided one of the few analyses of relationships of isolates within a clone. Matching actual AFLP with computer modeled AFLP and sequencing intergenic regions provide very good new strategies to identify mutational polymorphisms and to study the molecular evolutionary relationships in the closely related isolates.
8

A New paradigm for Ultrasound-Based Tissue Typing in Prostate Cancer

Moradi, Mehdi 27 September 2008 (has links)
Prostate cancer is the most common malignancy among men. The gold standard clinical diagnosis method for prostate cancer is histopathologic analysis of biopsy samples acquired under ultrasound guidance. However, most prostate tumors lack visually distinct appearances on medical images. Therefore, pathologically significant cases of cancer can be missed during biopsy, resulting in false negative or repeated trials. The goal of our research is to augment ultrasound-guided prostate biopsy by adding tissue typing information that can be used for targeted biopsies. As a new paradigm in tissue typing, we hypothesize and demonstrate that if a specific location in tissue undergoes sequential interactions with ultrasound, the time series of echoes, which we call radiofrequency (RF) time series, would carry ``tissue typing'' information. We provide a potential physical explanation for this phenomenon and justify it based on computer simulations of the ultrasound probe and scattering media. We also report laboratory and animal studies that illustrate the utility of the method. We rely on a set of seven spectral and fractal features extracted from RF time series for tissue typing. To show the clinical value of the proposed approach, we report an ex-vivo study involving 35 patients in which the utility of RF time series features for detection of prostate tumors is confirmed. The outcomes are validated using histopathologic disease distribution maps provided for the studied specimen. We show that the RF time series features are powerful tissue typing parameters that result in an area under receiver operating characteristic (ROC) curve of 0.87 in 10-fold cross validation for diagnosis of prostate cancer. They are significantly more accurate and sensitive than spectral features extracted from single RF frames, and also B-scan texture features (area under ROC curve of 0.78 and 0.72, respectively). A combination of these three categories of features results in a feature vector that provides an area under ROC curve of 0.95 in 10-fold cross-validation and 0.82 in leave-one-patient-out cross validation for diagnosis of prostate cancer. Using this hybrid feature vector and support vector machines, we create cancer distribution probability maps that highlight areas of tissue with high risk of cancer. / Thesis (Ph.D, Computing) -- Queen's University, 2008-09-27 07:51:11.45
9

Pleiotropy, epistasis, and clonal interference in bacteriophage [Lower-case Greek phi]X174 /

Pepin, Kim M. January 1900 (has links)
Thesis (Ph.D.)--University of Idaho, April 2006. / Major professor: Holly A. Wichman. Includes bibliographical references. Also available online in PDF format.
10

Development of novel molecular typing methods for Staphylococcus aureus

Sharma, Naresh Kumar January 1997 (has links)
No description available.

Page generated in 0.0556 seconds