121 |
Provenance of detrital zircons on Quaternary slope deposits in the south-western USA (Great Basin and Colorado Plateau)Richter-Krautz, Jana 07 September 2021 (has links)
This thesis results from a pilot study which, driven by repeatedly surprising results, opens up a reliable method of geochronology for Quaternary research. There have been repeated attempts to expand the limits of normal use of U-Pb dating. Geologists typically use U-Pb dating on detrital zircons (DZ) for dating and provenance studies on rocks older than the Cenozoic era. We tested several tephra layers in Utah and New Mexico, USA, with published 40 Ar/ 39 Ar ages between 1.3 and 1.6 Ma and found that the ages derived from clustered U-Pb dating are reliable, even though they were discordant. We used one of these tephra layers in the La Sal Mountains, Utah, to assign a minimum age to slope deposit layers (cover beds) underlying the tephra bed. In doing so, we discovered that we could not only identify unconformities between layers by means of palaeopedology. But that - although they were similar to one another regarding physical and chemical properties - they were not the same at all in terms of the provenance of their aeolian matter as derived from U-Pb analysis of detrital zircons, as one could actually assume. The source of aeolian matter mixed to these layers has changed decisively from layer to layer. The findings also allowed tentatively assigning palpable source areas for each layer.
Since this had demonstrated the feasibility of a provenance approach, we then extended our study regionally to cover beds of the central Great Basin (GB) and the northern Colorado Plateau (CP). Using a published sequence-stratigraphic approach based upon stratigraphically consistent phases of soil development, we attempted to study cover beds from the same two Upper Quaternary time slices. We expanded our range of methods by end-member modelling analyzes (EMMA) and the analysis of surface and shape of detrital zircons. We used statistical methods such as multidimensional scaling (MDS) and density functions (probability density functions and kernel density estimations) to visualize similarities and distances of age distributions. The MDS and the density functions showed very clearly that the patterns of ages between the GB and the CP can be divided into two groups that differ from one another. This is probably due to different transport cascades of the zircons to and within both areas. Due to the lack of databases on the morphology of in-situ zirconia, it is not yet possible to draw precise conclusions about transport routes from them, although we have probably been able to identify traces of several stages of aeolian transport on many zircons. Conclusions can also be drawn about
detrital zircons that were transported to the sampling point purely by the kinetic energy of volcanic eruptions during the Cretaceous (Cordilleran magmatic arc) and the Paleogene (strong volcanism within the study area). Moreover, we can show main similarities of the layers across the CP. Although they are separated spatially and temporally, they have a similar age distribution. The only exception here is the upper La Sal Mountains profile, for which I have several assumptions as to why this is so. We did not have enough conclusions for the reconstruction of the palaeoenvironmental conditions during the layer and soil formation phases; further investigations will have to follow. However, we show that a provenance study on Quaternary layers and further conclusions from the results are possible and would like to condense this approach for the study area in the future, but also try to transfer it to other study areas.:Abstract .......................................................................................................................3
Kurzfassung ................................................................................................................5
Contents ......................................................................................................................7
List of figures ............................................................................................................ 11
List of tables ............................................................................................................. 13
List of abbreviations and units .................................................................................. 14
1 Introduction ........................................................................................................... 16
1.1 Research questions ........................................................................................... 16
1.2 Cover beds ......................................................................................................... 17
1.3 Palaeosols .......................................................................................................... 17
1.4 Study area .......................................................................................................... 18
1.5 Zircons ............................................................................................................... 21
1.6 Thesis format ...................................................................................................... 23
2 Capability of U-Pb dating of zircons from Quaternary tephra: Jemez Mountains, NM, and La Sal Mountains, UT, USA ....................................................................... 24
2.1 Abstract .............................................................................................................. 25
2.2 Kurzfassung ....................................................................................................... 25
2.3 Introduction ........................................................................................................ 26
2.4 Geological setting ............................................................................................... 27
2.4.1 Jemez Mountains, New Mexico ...................................................................... 27
2.4.2 La Sal Mountains, Utah ................................................................................... 30
2.5 Methods ............................................................................................................. 30
2.6 Results and discussion ..................................................................................... 33
2.6 Conclusions ........................................................................................................ 38
Data availability ........................................................................................................ 38
Competing interests.................................................................................................. 38
Acknowledgements .................................................................................................. 38
2.7 References ......................................................................................................... 39
3 Cover beds older than the mid-Pleistocene revolution and the provenance of their aeolian components, La Sal Mountains, Utah, USA ........................................ 42
3.1 Abstract .............................................................................................................. 43
3.2 Introduction ........................................................................................................ 43
3.3 Material and methods ........................................................................................ 44
3.3.1 The La Sal Mountains tephra layer ................................................................. 44
3.3.2 Cover beds and palaeosols............................................................................. 45
3.3.3 Samples and analyses .................................................................................... 46
3.4 Results and discussion ...................................................................................... 49
3.5 Conclusions ....................................................................................................... 56
Acknowledgments ................................................................................................... 58
Summary information A. Supplementary data ......................................................... 58
3.6 References ........................................................................................................ 58
4 Zircon provenance of Quaternary cover beds using U-Pb dating: regional differences in the south-western USA ...................................................................... 63
4.1 Abstract .............................................................................................................. 64
4.2 Introduction ........................................................................................................ 65
4.3 Materials ............................................................................................................. 66
4.3.1 Study areas ..................................................................................................... 66
4.3.2 Stratigraphy and sampling sites ...................................................................... 68
4.3.3 Palaeolake deposits ........................................................................................ 71
4.3.4 Potential sources of detrital zircons ................................................................ 71
4.4 Methods ............................................................................................................. 75
4.4.1 End-member modelling of grainsize composition ........................................... 75
4.4.2 U-Pb dating ..................................................................................................... 75
4.4.3 Zircon dimensions and surfaces ..................................................................... 77
4.4.4 Statistical and graphical representations ........................................................ 78
4.5 Results and discussion ...................................................................................... 79
4.5.1 Aeolian contribution to cover beds .................................................................. 79
4.5.2 Zircon morphology .......................................................................................... 82
4.5.3 Age distributions of detrital zircons ................................................................. 88
4.5.4 Multidimensional scaling (MDS) ..................................................................... 94
4.6 Conclusions ....................................................................................................... 98
Appendix ................................................................................................................ 102
Acknowledgements ................................................................................................ 102
4.7 References ....................................................................................................... 103
5 Extended summary .............................................................................................. 118
5.1 Synthesis .......................................................................................................... 118
5.2 Regional differences and similarities ................................................................ 123
5.3 Outlook ............................................................................................................. 128
6 Supplementary Information ................................................................................. 130 6.1 Supplementary material chapter ‘Capability of U-Pb dating of zircons from
Quaternary tephra: Jemez Mountains, NM, and La Sal Mountains, UT, USA’........ 130
6.1.1 Raw data electron microprobe analyses of glass shards from tephra layers .131
6.1.2 Raw data U-Pb ratios and calculated ages for all samples ............................137
6.2 Supplementary material chapter 3 ‘Cover beds older than the mid-Pleistocene
revolution and the provenance of their eolian components, La Sal Mountains,
Utah, USA’ .............................................................................................................. 160
6.3 Supplementary material chapter 4 ................................................................... 175
6.3.1 SI1 Raw U-Pb ratios and calculated ages ......................................................175
6.3.2 SI 3 Grainsize diagrams of samples of the present study (except for PL)......266
6.3.3 SI 4 Zircon morphology data .........................................................................269
6.3.3.1 Great Basin .................................................................................................269
6.3.3.2 Colorado Plateau ........................................................................................289
7 References (excluding chapters 2, 3 and 4) ....................................................... 308
8 Acknowledgements ............................................................................................. 312 / Diese Arbeit ist das Ergebnis einer Pilotstudie, die aufgrund immer wieder neuer, unerwarteter Ergebnisse eine zuverlässige geochronologische Methode für die Quartärforschung eröffnet. Es wurde mehrfach versucht, die üblichen Grenzen der Verwendung der U-Pb-Datierung zu erweitern. In der Geologie wird die U-Pb-Datierung an detritischen Zirkonen (DZ) normalerweise für Datierungs- und Provenienzstudien an Gesteinen, die älter als das Känozoikum sind, eingesetzt. Wir haben mehrere Tephra-Schichten in Utah und New Mexico, USA, mit veröffentlichten 40 Ar/ 39 Ar-Altern zwischen 1.3 und 1.6 Ma getestet und festgestellt, dass die Alter, die aus den Clustern der U-Pb-Datierungen abgeleitet wurden, zuverlässig sind, obwohl sie diskordant waren. Wir haben
eine dieser Tephra-Schichten in den La Sal Mountains, Utah, verwendet, umlagernden Deckschichten ein Mindestalter zuzuweisen. Dabei stellten wir fest, dass wir nicht nur mittels Paläopädologie Schichtgrenzen zwischen Schichten ausweisen konnten. Sondern dass sie sich, obwohl sie sich in Bezug auf physikalische und chemische Eigenschaften ähneln, in Bezug auch auf die Herkunft ihres äolischen Materials (abgeleitet aus der U-Pb-Analyse der DZ) überhaupt nicht glichen, wie man eigentlich annehmen könnte. Die Herkunft des eingemischten äolischen Materials hat sich von Schicht zu Schicht entscheidend verändert. Die Ergebnisse ermöglichten es auch, jeder Schicht konkrete wahrscheinliche Liefergebiete zuzuweisen. Da dies die Möglichkeit einer Provenienz-Analyse belegt hatte, erweiterten wir unsere Studie regional auf Deckschichten des zentralen Great Basin (GB) und des nördlichen Colorado Plateaus (CP). Unter Verwendung eines publizierten sequenz-stratigraphischen Ansatzes, der auf stratigraphisch konsistenten Phasen der Bodenentwicklung basiert, haben wir versucht, Deckschichten aus denselben beiden oberen quartären Zeitscheiben zu untersuchen. Wir erweiterten unser Methodenspektrum um End Member-Modellierung (EMMA) und die Analyse der Oberfläche und Form von DZ. Wir verwendeten statistische Methoden wie mehrdimensionale Skalierung (MDS) und Dichtefunktionen (Wahrscheinlichkeitsdichtefunktionen und Kerndichteschätzungen), um Ähnlichkeiten und Abstände von Altersverteilungen zu visualisieren. MDS und Dichtefunktionen zeigten deutlich, dass GB
und CP unterschiedliche Altersspektren aufweisen. Dies ist wahrscheinlich auf unterschiedliche Transportkaskaden der Zirkone in beide und innerhalb beider Gebiete zurückzuführen. Aufgrund des Fehlens von Datenbanken zur Morphologie von gesteinsbürtigen Zirkonen kann man daraus noch keine genauen Rückschlüsse über Transportwege ziehen, obwohl wir wahrscheinlich an vielen Zirkonen Spuren mehrerer Schritte des äolischen Transports identifizieren konnten. Es liegen auch DZ vor, die vermutlich ausschließlich durch die kinetische Energie von Vulkanausbrüchen während der Kreidezeit (Cordilleran Magmatic Arc) und des Paläogens (starker Vulkanismus innerhalb des Untersuchungsgebiets) zum Probenahmepunkt transportiert wurden.
Darüber hinaus können wir Ähnlichkeiten zwischen den verschiedenen Schichten im CP zeigen. Obwohl sie räumlich und zeitlich getrennt sind, haben sie eine ähnliche Altersverteilung. Die einzige Ausnahme hiervon ist das Profil der höheren La Sal Mountains, wofür es mehrere mögliche Gründe gibt. Wir konnten nicht genügend Erkenntnisse für die Rekonstruktion der paläoökologischen Bedingungen während der Schicht- und Bodenbildungsphasen gewinnen; weitere Untersuchungen müssen folgen.
Wir zeigen jedoch, dass eine Provenienzstudie an quartären Schichten und weiterreichende Schlussfolgerungen möglich sind, und möchten diesen Ansatz für das Untersuchungsgebiet in Zukunft verdichten, aber auch versuchen, ihn auf andere Untersuchungsgebiete zu übertragen.:Abstract .......................................................................................................................3
Kurzfassung ................................................................................................................5
Contents ......................................................................................................................7
List of figures ............................................................................................................ 11
List of tables ............................................................................................................. 13
List of abbreviations and units .................................................................................. 14
1 Introduction ........................................................................................................... 16
1.1 Research questions ........................................................................................... 16
1.2 Cover beds ......................................................................................................... 17
1.3 Palaeosols .......................................................................................................... 17
1.4 Study area .......................................................................................................... 18
1.5 Zircons ............................................................................................................... 21
1.6 Thesis format ...................................................................................................... 23
2 Capability of U-Pb dating of zircons from Quaternary tephra: Jemez Mountains, NM, and La Sal Mountains, UT, USA ....................................................................... 24
2.1 Abstract .............................................................................................................. 25
2.2 Kurzfassung ....................................................................................................... 25
2.3 Introduction ........................................................................................................ 26
2.4 Geological setting ............................................................................................... 27
2.4.1 Jemez Mountains, New Mexico ...................................................................... 27
2.4.2 La Sal Mountains, Utah ................................................................................... 30
2.5 Methods ............................................................................................................. 30
2.6 Results and discussion ..................................................................................... 33
2.6 Conclusions ........................................................................................................ 38
Data availability ........................................................................................................ 38
Competing interests.................................................................................................. 38
Acknowledgements .................................................................................................. 38
2.7 References ......................................................................................................... 39
3 Cover beds older than the mid-Pleistocene revolution and the provenance of their aeolian components, La Sal Mountains, Utah, USA ........................................ 42
3.1 Abstract .............................................................................................................. 43
3.2 Introduction ........................................................................................................ 43
3.3 Material and methods ........................................................................................ 44
3.3.1 The La Sal Mountains tephra layer ................................................................. 44
3.3.2 Cover beds and palaeosols............................................................................. 45
3.3.3 Samples and analyses .................................................................................... 46
3.4 Results and discussion ...................................................................................... 49
3.5 Conclusions ....................................................................................................... 56
Acknowledgments ................................................................................................... 58
Summary information A. Supplementary data ......................................................... 58
3.6 References ........................................................................................................ 58
4 Zircon provenance of Quaternary cover beds using U-Pb dating: regional differences in the south-western USA ...................................................................... 63
4.1 Abstract .............................................................................................................. 64
4.2 Introduction ........................................................................................................ 65
4.3 Materials ............................................................................................................. 66
4.3.1 Study areas ..................................................................................................... 66
4.3.2 Stratigraphy and sampling sites ...................................................................... 68
4.3.3 Palaeolake deposits ........................................................................................ 71
4.3.4 Potential sources of detrital zircons ................................................................ 71
4.4 Methods ............................................................................................................. 75
4.4.1 End-member modelling of grainsize composition ........................................... 75
4.4.2 U-Pb dating ..................................................................................................... 75
4.4.3 Zircon dimensions and surfaces ..................................................................... 77
4.4.4 Statistical and graphical representations ........................................................ 78
4.5 Results and discussion ...................................................................................... 79
4.5.1 Aeolian contribution to cover beds .................................................................. 79
4.5.2 Zircon morphology .......................................................................................... 82
4.5.3 Age distributions of detrital zircons ................................................................. 88
4.5.4 Multidimensional scaling (MDS) ..................................................................... 94
4.6 Conclusions ....................................................................................................... 98
Appendix ................................................................................................................ 102
Acknowledgements ................................................................................................ 102
4.7 References ....................................................................................................... 103
5 Extended summary .............................................................................................. 118
5.1 Synthesis .......................................................................................................... 118
5.2 Regional differences and similarities ................................................................ 123
5.3 Outlook ............................................................................................................. 128
6 Supplementary Information ................................................................................. 130 6.1 Supplementary material chapter ‘Capability of U-Pb dating of zircons from
Quaternary tephra: Jemez Mountains, NM, and La Sal Mountains, UT, USA’........ 130
6.1.1 Raw data electron microprobe analyses of glass shards from tephra layers .131
6.1.2 Raw data U-Pb ratios and calculated ages for all samples ............................137
6.2 Supplementary material chapter 3 ‘Cover beds older than the mid-Pleistocene
revolution and the provenance of their eolian components, La Sal Mountains,
Utah, USA’ .............................................................................................................. 160
6.3 Supplementary material chapter 4 ................................................................... 175
6.3.1 SI1 Raw U-Pb ratios and calculated ages ......................................................175
6.3.2 SI 3 Grainsize diagrams of samples of the present study (except for PL)......266
6.3.3 SI 4 Zircon morphology data .........................................................................269
6.3.3.1 Great Basin .................................................................................................269
6.3.3.2 Colorado Plateau ........................................................................................289
7 References (excluding chapters 2, 3 and 4) ....................................................... 308
8 Acknowledgements ............................................................................................. 312
|
122 |
Deformace, metamorfóza a metasomatóza v gemersko-veporské kontaktní zóně v Západních Karpatech a možné vazby na Greywacke Zone ve Východních Alpách / Deformation, metamorphism and metasomatism in the Gemer-Vepor Contact Zone in the Western Carpathians and the possible links to the Greywacke Zone in the Eastern AlpsNovotná, Nikol January 2019 (has links)
The studied area extends from the Ochtiná Unit in Western Carpathians to the Veitsch Nappe Eastern Alps. The thesis represents a complex multidisciplinary work that combines the structural analysis, petrology and geochronology. The three main objectives of this thesis: reevaluation of the structure, deformation and metamorphic records, and original position of the Ochtiná Unit, understanding the distinct metasomatic processes recorded along the contact of two major units of the Central Western Carpathians - in the Gemer-Vepor Contact Zone - and their relation to distinct tectono-metamorphic events, testing the possible links between the Ochtiná Unit in the Gemer-Vepor Contact Zone of the Western Carpathians and the Veitsch Nappe in the Greywacke Zone of the Easten Alps, both well known for the Lower Carboniferous shale/schist sequence accompanied by the abundant presence of magnesite ore bodies. Keywords: Central Western Carpathians, Greywacke Zone, Ochtiná Unit, Veitsch Nappe, U-Pb zircon dating, Phase equilibrium modelling
|
123 |
Unraveling the Tectonic History of the Aurek Metagabbro within the Seve Nappe Complex, Scandinavian Caledonides / Undersökningsstudie av metagabbro i Aurek och dess tektoniska utveckling inom Seveskollan, Skandinaviska KaledonidernaRousku, Sabine January 2021 (has links)
The Scandinavian Caledonides form a mountain range comprising nappe stacks of numerous far-travelled thrust sheets. The thrust sheets consist of diverse lithologies representing pre- and synorogenic sedimentary and igneous rocks subsequently metamorphosed to various degrees, from the Late Neoproterozoic to Middle Devonian. In particular, (ultra)-high-grade metamorphic rocks have been recorded in the Seve Nappe Complex (SNC), extending >1000 km along strike of the Scandinavian Caledonides. Included in the SNC of northern Sweden is the Vássačorru Igneous Complex (VIC), consisting of bimodal magmatic suites, that formed c. 845 Ma. Fieldwork was conducted in the Kebnekaise mountains of northern Sweden, focusing on the high-grade Aurek metagabbro within the VIC of the SNC. Aurek is a key locality representing both initial stages of Iapetus Ocean formation in the Ediacaran and later stage Caledonian subduction affinities, from the collision between Laurentia and Baltica. In this study, petrological description, zircon U-Pb geochronology, mineral chemistry analysis, whole rock composition, and thermodynamic modeling was performed. Zircon U-Pb geochronology yielded protolith ages of 609±2.5 Ma, and 614±2.3 Ma, suggesting the Aurek metagabbro to not be part of the VIC, as has previously been described. The age of Aurek can instead be correlated to the Kebnekaise Dyke Swarms at c. 607 Ma, in the Kebnekaise mountains. Whole rock major and trace element data of e.g., Al2O3 (15.0 – 25.0 ppm) versus SiO2 (46.0 – 53.0 ppm), Rb (2.0 – 18.0 ppm), Zr (8.0 – 58.0 ppm) versus Y (2.7 – 18.0 ppm), Th/Yb ratio 0.25 – 2.0 and Nb/Yb ratio 1.30 – 5.14, indicate assimilation of continental crust. These major and trace element signatures show that the protolith of the Aurek metagabbro probably was emplaced in a continental rift setting in the Ediacaran. Semi-quantitative thermodynamic modeling from this study present blueschist to amphibolite facies conditions for the Aurek metagabbro at 11.8 – 12.6 kbar and 480 – 565 oC, confirming the unit experienced subduction, possibly in the Late Cambrian to Early Ordovician. The metamorphic grade and protolith age show similar features to correlative rock sequences in the Tsäkkok Lens, south of Aurek, in Norrbotten. Consequently, this study concludes that subduction, exhumation and subsequent deformation for Aurek, probably was equivalent to those of the Tsäkkok Lens, extending the HP affinities of the SNC further north in the Swedish Caledonides. / Skandinaviska Kaledoniderna utgör en bergskedja bestående av olika skollor som transporterats hundratals kilometer från sin ursprungskälla. Skollorna består av varierande bergarter som representerar olika utvecklingsskeden i formationen av Kaledoniderna under senare Neoproterozoikum och mellan Devon. Utmärkande har höggradiga metamorfiska bergarter återfunnits i Seveskollan som sträcker sig >1000 km längs med strykningsriktningen av de Skandinaviska Kaledoniderna. I norra Sverige inkluderar Seveskollan det magmatiska Vássačorru-komplexet, bestående av bimodal magmatism som bildats ca 845 Ma. Fältarbete utfördes kring Kebnekaisebergen i norra Sverige, med fokus på höggradig metagabbro från Aurek, ett område inom det magmatiska Vássačorru-komplexet. Aurek är ett viktigt område som representerar både initiala stadier av Iapetushavets bildande och efterföljande formationer från kollisionen mellan Laurentia och Baltica plattorna. I denna studie utfördes petrologisk beskrivning av mineral, U-Pb geokronologi av zirkon, kemisk analys av mineral och bulkkomposition av bergarter, samt termodynamisk modellering. U-Pb dateringen av zirkon resulterade i en ursprungsålder på 609±2,5 Ma och 614±2,3 Ma för metagabbro från Aurek. Detta indikerar att metagabbro i Aurek inte är en del av det magmatiska Vássačorru-komplexet, något som tidigare antagits. Åldern kan istället korreleras till Kebnekaise-gångkomplexet med en ålder på ca 607 Ma. Huvud- och spårelement i Aureks metagabbro tyder på assimilering av kontinentalskorpa, vilket föreslår att ursprungsbergarten till metagabbro i Aurek bildades i en kontinental spridningszon. Den termodynamiska modelleringen resulterade i metamorfiska förhållanden på mellan 11,8 – 12,6 kbar och 480 – 565 oC för bergarterna, vilket påvisar att den tektoniska miljön som senare präglat bergarterna förmodligen var associerad med en subduktionszon.
|
124 |
Etude pétro-chronologique de la chaîne des Longmen Shan (Tibet oriental) : héritage géologique et implications pour la géodynamique actuelle / A petro-chronological study of the Longmen Shan thrust belt (eastern Tibet) : geological inheritance and implication for the present geodynamicsAiraghi, Laura 27 October 2017 (has links)
Un des enjeux majeurs en Sciences de la Terre est la compréhension des mécanismes de déformation de la lithosphère continentale dans des zones de convergence. Le plateau Tibétain constitue un laboratoire naturel idéal pour l'étude des processus crustaux profonds actifs dans ces contextes, du fait de sa superficie et de son altitude remarquables. Le soulèvement et l'épaississement de la croûte Tibétaine ont été classiquement attribués aux effets de la collision Inde-Asie Tertiaire. Cependant, cette interprétation a été récemment mise en question par une série d’observations géologiques et géophysiques non concordantes, à différents endroits du plateau.L'objectif de cette thèse est de quantifier l’importance de l’héritage géologique dans la déformation à long-terme et à court-terme d’une chaîne active, en déchiffrant les différentes étapes de la structuration des Longmen Shan, la bordure la plus énigmatique du plateau Tibétain. Dans la chaîne des Longmen Shan la croûte Tibétaine est très épaissie (>60 km) et l'activité tectonique est localisée le long des failles d’échelle lithosphérique, comme démontré par les séismes de Wenchuan 2008 (Mw 7.9) et de Lushan 2013 (Mw 6.6). Un fort gradient topographique est présent, bien que les taux de convergence mesurés par GPS soient très faibles (<3 mm/an). Ces caractéristiques ne sont pas explicables par un modèle unique de déformation crustale, ce qui suggère une forte contribution de l'héritage géologique acquis avant la collision Inde-Asie dans la structure actuelle de la chaîne.Une étude pétro-chronologique qui combine des observations microstructurales avec la cartographie chimique des minéraux majeurs et accessoires, la modélisation thermodynamique et la datation in-situ par méthode 40Ar/39Ar et U-Pb/Th sur mica et allanite a été appliquée aux roches métamorphique à l’affleurement de chaque côté des faille majeures. L’analyse haute résolution montre que les minéraux métamorphiques dans la matrice des sédiments à grenat provenant des unités internes de la chaîne préservent dans leur composition le témoignage de différentes étapes du métamorphisme. Ceci s’explique par un rééquilibrage chimique incomplet en raison de la variabilité des fluides disponibles au cours du métamorphisme. Les différentes étapes du métamorphisme sont aussi enregistrées dans le signal 40Ar/39Ar des micas et dans la composition des minéraux accessoires.La compréhension des processus pétrologiques à petite échelle a été intégrée aux observations de terrain afin de quantifier l’épaississement de la croûte Tibétaine au Mésozoïque (> 30 km) et de mettre en évidence un saut métamorphique >150°C à travers les failles majeures, hérité de la tectonique Mésozoïque. Si les unités internes de la chaîne ont été fortement déformées, découplées du socle cristallin et métamorphisées à T ~580-600°C (P ~11 kbar), les unités externes apparaissent moins déformées et épaissies (T< 400°C, P< 5 kbar). Une exhumation partielle du socle depuis c. 20 km de profondeur a été également documentée à 120-140 Ma et reliée à un évènement tectonique méconnu auparavant.Cette thèse a ainsi permis de quantifier la durée et les conditions qui caractérisent les différentes étapes de la maturation de la chaîne: les unités internes atteignent la relaxation thermique 40 Ma après le début de la propagation du prisme orogénique. Le socle est réactivé 40 Ma plus tard, lorsqu’il atteint des conditions thermiques proches de celles de sa couverture sédimentaire. L’héritage géologique Mésozoïque contrôle fortement l’état thermique et rhéologique de la croûte supérieure au moment de la réactivation Cénozoïque ainsi que la structure actuelle de la chaîne.L’étude petro-chronologique de différents segments de la chaîne a aussi mis en évidence une segmentation métamorphique héritée du Mésozoïque qui correspond à la segmentation actuelle des failles. Ceci suggère que des structures héritées pourraient en partie contrôler la localisation des séismes récents. / One of the major challenges in Earth Sciences is understanding how the continental lithosphere deforms in convergent settings, according to which timescales. For its elevation and extension the Tibetan plateau is an ideal natural laboratory for the study of deep crustal processes in active convergent settings. The rise and thickening of the Tibetan plateau has generally been related to the only collision between the Eurasian and Indian plates during the Cenozoic. However, this interpretation has been recently put into question by apparently contrasting geophysical and geological features observed at different locations on the plateau.The aim of this PhD is to quantify the importance of the geological inheritance in the long-term and short-term deformation of an active thrust belt, focusing on the Longmen Shan orogen, the most enigmatic border of the Tibetan plateau. In the Longmen Shan (eastern Tibet) the Tibetan crust is over thickened (>60 km), the tectonic activity is localized along lithospheric faults -as demonstrated by the occurrence of the Mw 7.9 Wenchuan (2008) and Mw 6.6 Lushan (2013) earthquakes- and a high topography survives despite low convergence rates measured by GPS (<3 mm/yr). These observations are hardly reconcilable in a unique model of crustal deformation, suggesting a contribution of the geological inheritance from the geological history preceding the India-Asia collision.A petro-chronological approach that combines microstructural observations, compositional mapping of major and accessory mineral phases, thermodynamic modelling, in-situ 40Ar/39Ar dating, Ar diffusion modelling and in-situ U/Pb-Th allanite dating was applied to metamorphic rocks on each side of the major faults that strike parallel to the belt. This high-resolution study shows that in garnet-bearing rocks of the internal units of the belt matrix minerals record different stages of the metamorphic path in their composition. This is due to an incomplete chemical re-equilibration explained by a variable fluid availability during metamorphism. Different stages of metamorphism and fluid-assisted reactions sequences are also recorded in the 40Ar/39Ar signal of micas and in the composition and textures of the accessory phases.The understanding of petrological processes at the small scale was combined with field observations to quantify the Mesozoic thickness of the Tibetan crust at > 30 km and to unravel a metamorphic jump of greater than 150°C across the major faults, inherited from the Mesozoic tectonics. While internal units of the belt were strongly deformed, decoupled from the basement and metamorphosed at T ~ 580-600°C (P ~11 kbar), external units were less deformed and experienced lower temperatures conditions (T < 400°C, P < 5 kbar). The partial exhumation of the crystalline basement from c. 20 km depth along the major fault (in both internal and external units) occurred at c. 120-140 Ma during a previously poorly documented tectonic event.The multi-method approach applied on a wide geographical area and on a large time interval enabled to quantify the rates and conditions of the different stages of the maturation of the belt; internal units reached the thermal relaxation at ~600°C 40 Ma after the beginning of the propagation of the orogenic load. The basement was re-activated 40 Ma later, at similar thermal conditions than its sedimentary cover. The Mesozoic geological inheritance is therefore a key element in the present structure of the belt and strongly controlled the rheological and structural state of the upper crust at the moment of the Cenozoic re-activation.The petro-chronological study of different segments of the belt showed an along-strike metamorphic segmentation of the Longmen Shan inherited from the Mesozoic. This segmentation corresponds to the present fault segmentation, underlying the potential role of inherited structure in controlling the geographic distribution of the recent earthquakes.
|
125 |
Magmatic response to the evolving New Zealand Margin of Gondwana during the Mid-Late CretaceousTappenden, Vanessa Elizabeth January 2003 (has links)
The Mount Somers Volcanic Group (MSVG) and Mandamus Igneous Complex (MIC) are the magmatic manifestations of the transition from convergence to extension at the Gondwana margin, which culminated in the separation of New Zealand from Australia and Antarctica. The MIC has been correlated both geochemically and temporally with the Central Marlborough Igneous Province (CMIP). The MSVG and CMIP are located in the Eastern Province of New Zealand. The MSVG is restricted to the Rakaia terrane, whereas the CMIP is restricted to the Pahau terrane. The Rakaia and Pahau terranes are thick accretionary complexes, which were strongly deformed as a result of prolonged subduction at the Gondwana margin. The Pahau terrane is the younger of the two and continued to be deposited and deformed until the abrupt cessation of subduction, which in the Marlborough sedimentary record occurred in the Motuan (100 - 105 Ma). Following the cessation of subduction, after an interval of 2-7 Ma of relative quiescence and subsidence of the Pahau terrane, the MSVG and MIC were erupted/emplaced. The production of MSVG and MIC magmas occurred simultaneously and the activity was of short-lived duration. SHRIMP geochronology yielded crystallisation ages of 97.0 ± 1.5 Ma to 98.0 ± 1.2 Ma from zircons separated from MSVG rhyolites. The SHRIMP ages are within error of the previously published Rb-Sr age for the MIC. The SHRIMP geochronology also confirmed the presence of inherited zircons which yielded ages consistent with their derivation from the Rakaia terrane. Ar-Ar geochronology confirmed the coeval nature of the MSVG and MIC magmatism, but yielded consistently younger ages (94.5 ± 3 Ma for the MSVG and 94.2 ± 1.7 Ma for the MIC). The systematic differences in ages obtained by SHRIMP and Ar-Ar are believed to be method-dependent. The MSVG comprises a calc-alkaline volcanic assemblage, which ranges in composition from basaltic-andesite lavas (SiO₂ = 54.5%) to high-silica rhyolites and ignimbrites (SiO₂ ≤ 78.1%). The MSVG had an original extent of at least 18 000 km². The magmas from the MSVG had high LILE/HFSE, high LILE/REE and moderately high LREE/HFSE which are characteristic of subduction derived magmas. Geochemical modelling suggests that the MSVG magmas were formed from partial melting of a subduction-modified mantle wedge, with high degrees of crustal assimilation. The assimilant had an isotopic composition similar to that of the Rakaia terrane, which is consistent with the geological setting of the MSVG. The MSVG has ⁸⁷Sr/⁸⁶Sri from 0.7055 to 0.7100 and ¹⁴³Nd/¹⁴⁴Ndi from 0.51254 to 0.51230 (ɛNd +0.5 to -4.2), which reflects varying degrees of contamination by Rakaia terrane. Radiogenic isotope modelling suggests that the MSVG end-members were derived from the same parent magma, which evolved through AFC processes from basaltic-andesite to rhyolite. The modelling strongly suggests that assimilation played a lesser role in the petrogenesis of the Malvern Hills magmas than in the petrogenesis of the other units. AFC modelling requires the degree of assimilation to increase as the magmas evolved. Oxygen isotope data are consistent with high degrees of crustal assimilation, and may indicate that the assimilant had higher ¹⁸O characteristics than the Rakaia terrane samples analysed. The MIC is an alkaline suite which ranges in composition from basalt and gabbro to syenite, trachyte and phono-tephrite. The MIC is interpreted to have formed from enriched asthenospheric mantle, with a composition similar to HIMU (²⁰⁶Pb/²⁰⁴Pbi ranges from 19.2 to 20.3). The samples range in isotopic composition from ⁸⁷Sr/⁸⁶Sri = 0.7030 to 0.7036, ¹⁴³Nd/¹⁴⁴Ndi = 0.51275 to 0.51268 (ɛNd +4.6 to +3.3). The range in isotopic composition is due to varying degrees of contamination by Pahau terrane, which reaches a maximum of 25% but in most samples is < 10%. The MIC is contaminated to a much lesser extent than the MSVG which is interpreted to be related to the thinner nature of the Pahau crust in the mid-Cretaceous. The latest phases of activity in the MIC were subjected to lower degrees of contamination which is interpreted to reflect the passage of magmas through pre-existing pathways. The onset of MSVG and CMIP magmatism coincided with the initiation of major rift-related depositional basins, and the eruption of the MSVG is demonstrably associated with normal faulting. The tectonic trigger responsible for the sudden onset of magmatism and rifting in the Eastern Province terranes was the detachment of the previously subducting slab following the cessation of subduction due to the arrival of the Hikurangi Plateau at the margin and the subsequent stalling of the Pacific spreading centre. The capture of the Gondwana margin led to the propogation of extension into the margin by the divergent Pacific plate. The ensuing extension aided the detachment of the subducting slab beneath the Eastern Province terranes. The slab-detachment promoted decompression melting of the sub-lithospheric mantle wedge to produce the MSVG magmas and triggered the ascent of asthenospheric mantle through the slab window, which melted through decompression to produce the CMIP magmatism. The asthenospheric mantle tapped by the slab detachment episode was highly enriched relative to N-MORB and is akin to the similar age HIMU-OIB affinity melts documented from Antarctica and Australia. The short-lived duration of activity is typical of slab-detachment related magmatism which occurs as a passive response to plate reconfiguration. The similarity in geochemistry of the MIC with OIB-affinity igneous centres in Australia and Antarctica implies an enriched mantle domain of large geographical extent. The distribution of relatively small volumes of OIB magmatism is suggestive of a fossil plume component, which was tapped in response to lithospheric extension producing relatively short-lived HIMU magmatism. The same fossil plume component has previously been implicated in the formation of the Cenozoic West Antarctic Rift System and may be responsible for the late Cretaceous magmatism in the Chatham Islands and Tertiary volcanics of the South Island of New Zealand.
|
126 |
The Protracted Magmatism and Hydrothermal Activity Associated with the Gibraltar Porphyry Cu-Mo Deposit, South Central British Columbia, Canada.Kobylinski, Christopher 01 August 2019 (has links)
The Gibraltar porphyry-Cu deposit is a large open pit porphyry Cu mine in Canada with the geological tonnage (production and reserves) of 3.2 Mt Cu. The Gibraltar deposit is hosted by the Granite Mountain Batholith (GMB), a tonalitic batholith with the surface exposure over 150 km2. All rocks within the batholith are tonalites with minor quartz diorites. The batholith intrudes into mafic volcanoclastic rocks of the Nicola group in the Quesnel terrane of the Canadian Cordillera. The Cu mineralization at Gibraltar is confined to a small 4.5 km2 area in the central part of the batholith and occurs primarily as disseminated chalcopyrite.
New U-Pb dating on zircon shows protracted late Triassic magmatism spanning ~25 m.y. for the formation of the GMB. Early magmatism is dated at 229.2±4.4 Ma in unmineralized tonalites. Later, at least three magmatism form the Cu mineralization during a period spanning from 218.9±3.1 Ma to 205.8±2.1 Ma. These fertile magmas form in a more mature arc setting, superseded early barren magmatic activity in a more juvenile arc setting for the bulk of the GMB. Epidote in the GMB shows compositional zoning with Fe-poor cores and Fe-rich rims. The zoning in the mineralized intrusions likely reflects changes in hydrothermal fluid, from S-rich to S-poor.
The data from the Gibraltar deposit shows that an economic porphyry Cu deposit may be found in igneous rocks with low Sr/Y in bulk rocks and low Eu/Eu* in zircon. In the Gibraltar deposit, Ce anomalies in zircon reflect oxidation conditions and are correlated with Cu resource associated with their respective intrusion.
|
127 |
Early Archaean crustal evolution: evidence from ~3.5million year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, AustraliaGreen, Michael Godfrey January 2001 (has links)
In the Pilgangoora Belt of the Pilbara Craton, Australia, the 3517 Ma Coonterunah Group and 3484-3468 Ma Carlindi granitoids underlie the 3458 Ma Warrawoona Group beneath an erosional unconformity, thus providing evidence for ancient emergent continental crust. The basalts either side of the unconformity are remarkably similar, with N-MORB-normalised enrichment factors for LILE, Th, U and LREE greater than those for Ta, Nb, P, Zr, Ti, Y and M-HREE, and initial e(Nd, Hf) compositions which systematically vary with Sm/Nd, Nb/U and Nb/La ratios. Geological and geochemical evidence shows that the Warrawoona Group was erupted onto continental basement, and that these basalts assimilated small amounts of Carlindi granitoid. As the Coonterunah basalts have similar compositions, they probably formed likewise, although they were deposited >60 myr before. Indeed, such a model may be applicable to most other early Pilbara greenstone successions, and so an older continental basement was probably critical for early Pilbara evolution. The geochemical, geological and geophysical characteristics of the Pilbara greenstone successions can be best explained as flood basalt successions deposited onto thin, submerged continental basement. This magmatism was induced by thermal upwelling in the mantle, although the basalts themselves do not have compositions which reflect derivation from an anomalously hot mantle. The Carlindi granitoids probably formed by fusion of young garnet-hornblende-rich sialic crust induced by basaltic volcanism. Early Archaean rocks have Nd-Hf isotope compositions which indicate that the young mantle had differentiated into distinct isotopic domains before 4.0 Ga. Such ancient depletion was associated with an increase of mantle Nb/U ratios to modern values, and hence this event probably reflects the extraction of an amount of continental crust equivalent to its modern mass from the primitive mantle before 3.5 Ga. Thus, a steady-state model of crustal growth is favoured whereby post ~4.0 Ga continental additions have been balanced by recycling back into the mantle, with no net global flux of continental crust at modern subduction zones. It is also proposed that the decoupling of initial e(Nd) and e(Hf) from its typical covariant behaviour was related to the formation of continental crust, perhaps by widespread formation of TTG magmas.
|
128 |
Processus d'accrétion crustale et régimes thermiques dans le bouclier des Guyanes : signatures géochimiques et thermochronologiques au transamazonien (2250-1950Ma)Enjolvy, Remi 11 December 2008 (has links) (PDF)
Ce travail de thèse s'intéresse à l'événement transamazonien en Guyane Française. Le Transamazonien constitue l'événement géodynamique majeur structurant le bouclier des Guyanes entre 2.2 et 2.0 Ga. L'évolution de l'orogenèse transamazonienne est décrite en termes de croissance crustale, prenant en compte des processus de recyclage archéen ainsi que des processus d'accrétion juvénile et de réactivation thermotectonique au Paléoprotérozoïque. Notre travail axé sur une étude géochronologique (U-Pb et Ar/Ar) et une étude géochimique (éléments majeurs et éléments en trace) a permis de proposer un modèle d'évolution en quatre étapes : une première étape avec la formation d'une croûte océanique juvénile à 2.2 Ga, une seconde étape de croissance crustale, avec la formation de série TTG entre 2.18 et 2.1Ga. Cette seconde étape présente une évolution du contexte de subduction générant les TTG, le résultat est la formation de magmas type «sanukitoïdes». La troisième étape présente la formation de magmas calco-alcalins (2.1 à 2.08 Ga) résultant du «refroidissement» du contexte de subduction déjà initié lors de la seconde étape. Le stade final est caractérisé par la formation de granites d'anatexie crustale (2.1 à 2.06 Ga). Plus globalement, notre étude sur le Transamazonien s'intéresse à la question clé des domaines paléoprotérozoïques, qui est de définir quels types de processus étaient actifs à cette période ? Le Paléoprotérozoïque se situe à la transition entre la période archéenne dominée par des processus de croissance crustale dits «archaïques» et une période récente caractérisée par des processus de croissance crustale dits «modernes».
|
129 |
Whole-Rock Lead-Lead Systematics and Major Element Analyses on the 1.85 GA. FLIN FLON Paleosol, Manitoba, Canada: Implications for Uranium Mobility.Valencia, Federico Arturo 02 December 2011 (has links)
The 1.85 Ga Flin Flon paleosol located in Flin Flon, Manitoba, Canada, is studied with the purpose of determining the timing and geochemical trend of uranium migration. Radiometric minimum ages of sediments and paleosols indicates the presence of a post-depositional event, these ages are bracketed by the Trans-Hudson orogeny event (2155–1750 Ma) which resulted in the alteration of κ(Th/U) and µ(U/Pb) ratios by exposing volcanics to the atmosphere and instigating the mobilization of U. The profile shows that the Missi sediments lost Uby 84% average relative to corrected average upper crust value. The upper paleosol gained U by 11% and the lower paleosol lost U by 17%, relative to least weathered parent volcanics. Upward addition of U within the paleosol is associated with metasomatism. Potential mineralization of uranium occurs downgradient of the Missi and paleosol contact.
|
130 |
Geochemical evidence for incremental emplacement of Palms pluton, southern CaliforniaRoell, Jennifer L. January 2009 (has links)
Thesis (M.S.)--Indiana University, 2009. / Title from screen (viewed on February 2, 2010). Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Andrew P. Barth, Gabriel M. Filippelli, Kathy Licht. Includes vitae. Includes bibliographical references (leaves 102-110).
|
Page generated in 0.0397 seconds